RESUMO
MicroRNAs (miRNAs) are short endogenously expressed RNAs that have the potential to regulate the expression of any RNA. This potential has led to the publication of several thousand papers each year connecting miRNAs to many different genes and human diseases. By contrast, relatively few papers appear that investigate the molecular mechanism used by miRNAs. There is a disconnect between rigorous understanding of mechanism and the extraordinary diversity of reported roles for miRNAs. Consequences of this disconnect include confusion about the assumptions underlying the basic science of human miRNAs and slow development of therapeutics that target miRNAs. Here, we present an overview of investigations into miRNAs and their impact on gene expression. Progress in our understanding of miRNAs would be aided by a greater focus on the mechanism of miRNAs and a higher burden of evidence on researchers who seek to link expression of a particular miRNA to a biological phenotype.
Assuntos
Inativação Gênica , MicroRNAs/genética , Interferência de RNA , Animais , Antagomirs/síntese química , Antagomirs/genética , Antagomirs/uso terapêutico , Pareamento de Bases , Sequência de Bases , Estudos Clínicos como Assunto , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Variação Genética , Humanos , MicroRNAs/síntese química , MicroRNAs/uso terapêutico , Relação Estrutura-Atividade , Resultado do TratamentoRESUMO
Polyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington's disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins. Here, using polyQ disease models, we aimed to demonstrate how miRNA-based gene expression regulation is dependent on target sequence features. We show that the silencing efficiency and selectivity of art-miRNAs is influenced by the localization of the CAG repeat tract within transcript and the specific sequence context. Furthermore, we aimed to reveal the events leading to downregulation of mutant polyQ proteins and found very rapid activation of translational repression and HTT transcript deadenylation. Slicer-activity of AGO2 was dispensable in this process, as determined in AGO2 knockout cells generated with CRISPR-Cas9 technology. We also showed highly allele-selective downregulation of huntingtin in human HD neural progenitors (NPs). Taken together, art-miRNA activity may serve as a model of the cooperative activity and targeting of ORF regions by endogenous miRNAs.
Assuntos
Proteínas Argonautas/genética , Proteína Huntingtina/genética , Doença de Huntington/terapia , MicroRNAs/genética , Alelos , Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , MicroRNAs/síntese química , MicroRNAs/farmacologia , Mutação/genética , Fases de Leitura Aberta/genética , Peptídeos/genética , Biossíntese de Proteínas/efeitos dos fármacos , Interferência de RNA , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Expansão das Repetições de Trinucleotídeos/genéticaRESUMO
High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs (miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during library preparation have been documented, the relative performance of current reagent kits has not been investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human total RNA samples. We compared the performance of miRNA detection sensitivity, reliability, titration response and the ability to detect differentially expressed miRNAs. In addition, we assessed the use of unique molecular identifiers (UMI) sequence tags in one kit. We observed differences in detection sensitivity and ability to identify differentially expressed miRNAs between the kits, but none were able to detect the full repertoire of synthetic miRNAs. The reliability within the replicates of all kits was good, while larger differences were observed between the kits, although none could accurately quantify the relative levels of the majority of miRNAs. UMI tags, at least within the input ranges tested, offered little advantage to improve data utility. In conclusion, biases in miRNA abundance are heavily influenced by the kit used for library preparation, suggesting that comparisons of datasets prepared by different procedures should be made with caution. This article is intended to assist researchers select the most appropriate kit for their experimental conditions.
Assuntos
Biblioteca Gênica , Engenharia Genética/métodos , MicroRNAs/genética , Engenharia Genética/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , MicroRNAs/síntese química , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodosRESUMO
As molecular and cellular therapies advance in the clinic, the role of genetic regulation is becoming increasingly important for controlling therapeutic potency and safety. The emerging field of mammalian synthetic biology provides promising tools for the construction of regulatory platforms that can intervene with endogenous pathways and control cell behavior. Recent work has highlighted the development of synthetic biological systems that integrate sensing of molecular signals to regulated therapeutic function in various disease settings. However, the toxicity and limited dosing of currently available molecular inducers have largely inhibited translation to clinical settings. In this work, we developed synthetic microRNA-based genetic systems that are controlled by the pharmaceutical drug leucovorin, which is readily available and safe for prolonged administration in clinical settings. We designed microRNA switches to target endogenous cytokine receptor subunits (IL-2Rß and γc) that mediate various signaling pathways in T cells. We demonstrate the function of these control systems by effectively regulating T cell proliferation with the drug input. Each control system produced unique functional responses, and combinatorial targeting of multiple receptor subunits exhibited greater repression of cell growth. This work highlights the potential use of drug-responsive genetic control systems to improve the management and safety of cellular therapeutics.
Assuntos
Proliferação de Células/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade beta de Receptor de Interleucina-2/genética , Leucovorina/farmacologia , MicroRNAs/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Pareamento de Bases , Sequência de Bases , Linhagem Celular , Proliferação de Células/genética , Citocinas/genética , Citocinas/imunologia , Relação Dose-Resposta Imunológica , Regulação da Expressão Gênica , Subunidade gama Comum de Receptores de Interleucina/antagonistas & inibidores , Subunidade gama Comum de Receptores de Interleucina/imunologia , Subunidade beta de Receptor de Interleucina-2/antagonistas & inibidores , Subunidade beta de Receptor de Interleucina-2/imunologia , Camundongos , MicroRNAs/síntese química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , TransfecçãoRESUMO
MicroRNAs (miRNAs) are small gene-regulatory noncoding RNA that are highly enriched in cow milk. They are encapsulated in different extracellular vesicle (EV) subsets that protect them from the extracellular milieu and the harsh conditions of the gastrointestinal tract during digestion. Here, we isolated pellets enriched in 4 different EV subsets, via differential ultracentrifugation of commercial cow milk: 12,000 × g (P12K), 35,000 × g (P35K), 70,000 × g (P70K), and 100,000 × g (P100K). Small RNA sequencing (sRNA-Seq) analyses revealed an unprecedented level of diversity in the complete miRNA repertoire and features of unfractionated cow milk and derived EV subsets. Although 5 miRNA sequences represented more than 50% of all miRNAs, milk EV exhibited heterogeneous content of miRNAs and isomeric variants (termed isomiR): P100K EV were enriched in reference miRNA sequences, and P12K and P35K EV in related isomiR. Incubation of milk EV with human cultured HeLa cells led to cellular enrichment in miRNA miR-223, which was concomitant with decreased expression of a reporter gene placed under the control of miR-223, thereby demonstrating the functionality of miR-223. These results suggest that cow milk EV may transfer their miRNAs to human cells and regulate recipient cell gene expression programming in a manner as complex as that of their miRNA transcriptome. The biological activity and relevance of the different milk EV subsets and bioactive mediators, including small noncoding RNA, in health and disease, warrants further investigation.
Assuntos
Vesículas Extracelulares/química , MicroRNAs/síntese química , Transcriptoma/fisiologia , Ultracentrifugação/veterinária , Animais , Bovinos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Análise de Sequência de RNARESUMO
Despite considerable research on K-Ras inhibitors, none had been established until now. We synthesized nuclease-resistant synthetic miR-143 (miR-143#12), which strongly silenced K-Ras, its effector signal molecules AKT and ERK, and the K-Ras activator Sos1. We examined the anti-proliferative effect of miR-143#12 and the mechanism in human colon cancer DLD-1 cell (G13D) and other cell types harboring K-Ras mutations. Cell growth was markedly suppressed in a concentration-dependent manner by miR-143#12 (IC50 : 1.32 nmol L-1 ) with a decrease in the K-Ras mRNA level. Interestingly, this mRNA level was also downregulated by either a PI3K/AKT or MEK inhibitor, which indicates a positive circuit of K-Ras mRNA expression. MiR-143#12 silenced cytoplasmic K-Ras mRNA expression and impaired the positive circuit by directly targeting AKT and ERK mRNA. Combination treatment with miR-143#12 and a low-dose EGFR inhibitor induced a synergistic inhibition of growth with a marked inactivation of both PI3K/AKT and MAPK/ERK signaling pathways. However, silencing K-Ras by siR-KRas instead of miR-143#12 did not induce this synergism through the combined treatment with the EGFR inhibitor. Thus, miR-143#12 perturbed the K-Ras expression system and K-Ras activation by silencing Sos1 and, resultantly, restored the efficacy of the EGFR inhibitors. The in vivo results also supported those of the in vitro experiments. The extremely potent miR-143#12 enabled us to understand K-Ras signaling networks and shut them down by combination treatment with this miRNA and EGFR inhibitor in K-Ras-driven colon cancer cell lines.
Assuntos
Neoplasias do Colo/tratamento farmacológico , MicroRNAs/administração & dosagem , MicroRNAs/síntese química , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacologia , Benzotiazóis/administração & dosagem , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Sinergismo Farmacológico , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Células HT29 , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/química , MicroRNAs/farmacologia , Mutação , Transplante de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
DNA-based logic gates can be assembled into computational devices that generate a specific output signal in response to oligonucleotide input patterns. The ability to interface with biological and chemical environments makes DNA computation a promising technology for monitoring cellular systems. However, DNA logic gate circuits typically provide a single-stranded oligonucleotide output, limiting the ability to effect biology. Here, we introduce a novel DNA logic gate design capable of yielding a small molecule output signal. Employing a Staudinger reduction as a trigger for the release and activation of a small molecule fluorophore, we constructed AND and OR logic gates that respond to synthetic microRNA (miRNA) inputs. Connecting the gates in series led to more complex DNA circuits that provided a small molecule output in response to a specific pattern of three different miRNAs. Moreover, our gate design can be readily multiplexed as demonstrated by simultaneous small molecule activation from two independent DNA circuits.
Assuntos
Computadores Moleculares , DNA/química , Bibliotecas de Moléculas Pequenas/química , MicroRNAs/síntese química , MicroRNAs/químicaRESUMO
MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression. Aberrant expression of miRNAs can affect development of cancer and other diseases. Synthetic miRNA mimics can modulate gene expression and offer an approach to therapy. Inside cells, mature miRNAs are produced as double-stranded RNAs and miRNA mimics typically retain both strands. This need for two strands has the potential to complicate drug development. Recently, synthetic chemically modified single-stranded silencing RNAs (ss-siRNA) have been shown to function through the RNAi pathway to induce gene silencing in cell culture and animals. Here, we test the hypothesis that single-stranded miRNA (ss-miRNA) can also mimic the function of miRNAs. We show that ss-miRNAs can act as miRNA mimics to silence the expression of target genes. Gene silencing requires expression of argonaute 2 (AGO2) protein and involves recruitment of AGO2 to the target transcripts. Chemically modified ss-miRNAs function effectively inside cells through endogenous RNAi pathways and broaden the options for miRNA-based oligonucleotide drug development.
Assuntos
Proteínas Argonautas/genética , Materiais Biomiméticos/síntese química , MicroRNAs/genética , Células A549 , Animais , Proteínas Argonautas/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células HeLa , Células Hep G2 , Humanos , MicroRNAs/síntese química , Mimetismo MolecularRESUMO
Functional microRNAs (miRNAs) are produced from both arms of their precursors (pre-miRNAs). Their abundances vary in context-dependent fashion spatiotemporarily and there is mounting evidence of regulatory interplay between them. Here, we introduce chemically synthesized pre-miRNAs (syn-pre-miRNAs) as a general class of accessible, easily transfectable mimics of pre-miRNAs. These are RNA hairpins, identical in sequence to natural pre-miRNAs. They differ from commercially available miRNA mimics through their complete hairpin structure, including any regulatory elements in their terminal-loop regions and their potential to introduce both strands into RISC. They are distinguished from transcribed pre-miRNAs by their terminal 5' hydroxyl groups and their precisely defined terminal nucleotides. We demonstrate with several examples how they fully recapitulate the properties of pre-miRNAs, including their processing by Dicer into functionally active 5p; and 3p-derived mature miRNAs. We use syn-pre-miRNAs to show that miR-34a uses its 5p and 3p miRNAs in two pathways: apoptosis during TGF-ß signaling, where SIRT1 and SP4 are suppressed by miR-34a-5p and miR-34a-3p, respectively; and the lipopolysaccharide (LPS)-activation of primary human monocyte-derived macrophages, where TNF (TNFα) is suppressed by miR-34a-5p indirectly and miR-34a-3p directly. Our results add to growing evidence that the use of both arms of a miRNA may be a widely used mechanism. We further suggest that syn-pre-miRNAs are ideal and affordable tools to investigate these mechanisms.
Assuntos
Regulação da Expressão Gênica , MicroRNAs/fisiologia , RNA de Cadeia Dupla/fisiologia , Fator de Necrose Tumoral alfa/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Células HeLa , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , MicroRNAs/síntese química , Precursores de RNA/síntese química , Precursores de RNA/fisiologia , RNA de Cadeia Dupla/síntese química , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/farmacologiaRESUMO
A pseudo-eukaryotic nucleus (PEN) system consisting of a gene-containing DNA hydrogel encapsulated in a liposome is fabricated. Owing to the structural characteristics of gene-containing DNA hydrogel, mRNA transcription efficiency is promoted 2.57-fold. Through the use of PEN as a platform for mRNA delivery to the cytosol, prolonged protein translation is achieved.
Assuntos
Células Artificiais/química , Núcleo Celular/química , DNA Ligases/química , Lipossomos/química , MicroRNAs/síntese química , Plasmídeos/químicaRESUMO
Development of anticancer treatments based on microRNA (miRNA/miR) such as miR-34a replacement therapy is limited to the use of synthetic RNAs with artificial modifications. Herein, we present a new approach to a high-yield and large-scale biosynthesis, in Escherichia coli using transfer RNA (tRNA) scaffold, of chimeric miR-34a agent, which may act as a prodrug for anticancer therapy. The recombinant tRNA fusion pre-miR-34a (tRNA/mir-34a) was quickly purified to a high degree of homogeneity (>98%) using anion-exchange fast protein liquid chromatography, whose primary sequence and post-transcriptional modifications were directly characterized by mass spectrometric analyses. Chimeric tRNA/mir-34a showed a favorable cellular stability while it was degradable by several ribonucleases. Deep sequencing and quantitative real-time polymerase chain reaction studies revealed that tRNA-carried pre-miR-34a was precisely processed to mature miR-34a within human carcinoma cells, and the same tRNA fragments were produced from tRNA/mir-34a and the control tRNA scaffold (tRNA/MSA). Consequently, tRNA/mir-34a inhibited the proliferation of various types of human carcinoma cells in a dose-dependent manner and to a much greater degree than the control tRNA/MSA, which was mechanistically attributable to the reduction of miR-34a target genes. Furthermore, tRNA/mir-34a significantly suppressed the growth of human non-small-cell lung cancer A549 and hepatocarcinoma HepG2 xenograft tumors in mice, compared with the same dose of tRNA/MSA. In addition, recombinant tRNA/mir-34a had no or minimal effect on blood chemistry and interleukin-6 level in mouse models, suggesting that recombinant RNAs were well tolerated. These findings provoke a conversation on producing biologic miRNAs to perform miRNA actions, and point toward a new direction in developing miRNA-based therapies.
Assuntos
Antineoplásicos/síntese química , Bioengenharia/métodos , Sobrevivência Celular/efeitos dos fármacos , MicroRNAs/síntese química , Pró-Fármacos/síntese química , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/isolamento & purificação , MicroRNAs/farmacologia , Pró-Fármacos/isolamento & purificação , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
The mutant promoter of human telomerase reverse transcriptase (hTERT) shows high transcriptional activity in bladder cancer cells. Some up-regulated microRNAs (miRNAs) are reported as oncogenic factors in bladder cancer. Previous studies report that miRNAs can be inhibited by base-pairing interactions. The purpose of this study is to construct a synthetic device driven by mutant hTERT promoter to suppress four up-regulated miRNAs and to verify its effects on phenotypes of bladder cancer cells and human normal cells. Tandem bulged miRNA binding sites targeting oncogenic miRNAs were inserted into the 3' untranslated region (3' UTR) of mutant hTERT promoter-driven Renilla luciferase gene to construct a synthetic tumor-specific device, miRNA sponges. A negative control was generated by using tandem repeated sequences without targeting any known miRNA. Bladder cancer cells (T24, 5637, UM-UC-3) and human fiber cells (HFC) were transfected with devices. Various functional assays were used to detect the effects of this device. The activity of the mutant hTERT promoter detected by luciferase assay was about three times as large as the wild-type hTERT promoter in bladder cancer cells, while it could not be measured in HFC. Other assays indicated that the synthetic device can significantly inhibit cell growth, decrease motility, and induce apoptosis in bladder cancer cells but not in HFC. A synthetic biology platform is employed to construct tumor-specific miRNA sponges that can be used to target oncogenic miRNAs to inhibit the progression of bladder cancer cells without affecting normal cells.
Assuntos
Carcinogênese , Terapia Genética , MicroRNAs/genética , Telomerase/biossíntese , Neoplasias da Bexiga Urinária/genética , Regiões 3' não Traduzidas/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/síntese química , MicroRNAs/uso terapêutico , Regiões Promotoras Genéticas , Telomerase/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapiaRESUMO
Dysregulation of microRNAs has been studied thoroughly, and has been observed in a variety of tumors including vulvar carcinomas, a rare type of gynecological tumor with increasing incidence. However, very few therapeutic alternatives have reached the clinical setting, and there is an urgent unmet need to develop novel strategies for patients with this tumor type. Thus, a microRNA (miRNA) sponge for the miR-17 miRNA family was designed, synthesized and validated in vitro in order to explore a new therapeutic strategy based on inhibiting this oncogenic miRNA family in vulvar cancer. Members of the miR-17 family were evaluated for expression in a vulvar tumor cell line (SW954) and 20 HPV negative formalin-fixed paraffin-embedded (FFPE) samples by quantitative real-time PCR (qRT-PCR). Six in tandem, bulged sequences that were complementary to these miRNAs were designed, synthesized, cloned, and transfected into SW954 cells. A luciferase reporter assay with a psiCheck2 vector was used to test the specificity of the sponge sequences for miR-17 family miRNA binding. Taqman qRT-PCR was used to test how the sponges affected miRNA expression. In FFPE samples, higher expression of miR-20a and miR-106a correlated with deeper tumor invasion (P = 0.0187 and P = 0.0404, respectively). The luciferase reporter assay validated the specificity of the sponge for miR-17 family members. Using qRT-PCR, we confirmed this specificity with decreased expression in 5 (out of six) miRNAs of the miR-17 family in SW954 cells. Although our results are preliminary, these results demonstrate that these miRNA sponges are potent inhibitors of the miR-17 family of miRNAs in SW954. Therefore, this miRNA-specific sponge may be developed into a novel therapeutic treatment for patients with vulvar cancer.
Assuntos
MicroRNAs/síntese química , Neoplasias Vulvares/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/farmacologia , Terapia de Alvo Molecular , Família Multigênica/efeitos dos fármacos , Neoplasias Vulvares/tratamento farmacológicoRESUMO
Adipose tissues play a critical role in the regulation of energy metabolism and homeostasis, and is also an important endocrine organ. Adipocyte differentiation is a complicated physiological process during which mesenchymal stem cells differentiate into adipocytes. This process is synergistically regulated by a large number of transcription factors, hormones and signaling pathway molecules. As a class of endogenous non-coding RNA (ncRNA), microRNAs (miRNAs) regulate gene expression mainly through post-transcriptional translational repression. In recent years, numerous studies have demonstrated that miRNA could have an impact on adipocyte differentiation and adipogenesis by modulating the expression levels of several adipogenic transcription factors and key signaling molecules. In this review, we summarize the mechanism of miRNA in regulating the differentiation of white/brown/beige adipocytes and the relevant signaling pathways and key factors, in the hope of providing theoretical guidance and new thoughts for treating obesity and other metabolic diseases.
Assuntos
Adipócitos/metabolismo , Adipogenia , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Adipócitos/citologia , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/síntese química , MicroRNAs/genética , Transdução de SinaisRESUMO
microRNA (miR)-205 is downregulated and acts as a tumor suppressor in human melanoma cells. Previously, for clinical application, we added aromatic benzene-pyridine (BP-type) analogs to the 3'-overhang region of the RNA-strand and changed the sequences of the passenger strand in the miR-143 duplex. Here, we demonstrated the antitumor effect in vitro and in vivo of miR-205 that was also chemically modified by BP and had altered passenger sequence. In in vitro experiments, transfection with the synthetic miR-205 (miR-205BP/S3) significantly inhibited the growth of human melanoma cells. Exogenous miR-205BP/S3 suppressed the protein expression levels of E2F1 and VEGF, which are validated targets of miR-205-5p, and BCL2, a transcribed molecule of E2F1, as did Pre-miR-205, used as a miR-205 mimic having the wild-type sequence. On the basis of the results of a luciferase activity assay, miR-205BP/S3 directly targeted E2F1, as did Pre-miR-205. However, miR-205BP/S3 was much more resistant to RNase than Pre-miR-205 in fetal bovine serum and to RNase in mice xenografted with human melanoma tissues. In addition, the intratumoral injection of miR-205BP/S3 exhibited a significant antitumor effect compared with the case of control miRNA or Pre-miR-205 in human melanoma cell-xenografted mice. These findings indicate that miR-205BP/S3 is a possible promising therapeutic modality for melanoma.
Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , MicroRNAs/síntese química , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Genes Supressores de Tumor , Humanos , Injeções Intralesionais , Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
We sought to investigate the antifibrotic effects of an artificial microRNA (miRNA) targeting connective tissue growth factor (CTGF) using the ultrasound-targeted cationic liposome-bearing microbubble destruction gene delivery system. Cationic liposomes were conjugated with microbubbles using a biotin-avidin system. Plasmids carrying the most effective artificial miRNA sequences were delivered by ultrasound-targeted cationic liposome-bearing microbubble destruction gene delivery system to rats with hepatic fibrosis. The results show that this method of gene delivery effectively transported the plasmids to the rat liver. The artificial miRNA reduced hepatic fibrosis pathological alterations as well as the protein and mRNA expressions of CTGF and transforming growth factor ß1. Furthermore, the CTGF gene silencing decreased the levels of type I collagen and α-smooth muscle actin (P<0.01). These data suggest that delivery of an artificial miRNA targeted against CTGF using ultrasound-targeted cationic liposome-bearing microbubble destruction may be an efficacious therapeutic method to ameliorate hepatic fibrosis.
Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Técnicas de Transferência de Genes , Cirrose Hepática/terapia , MicroRNAs/genética , Plasmídeos , Interferência de RNA , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Animais , Cátions , Linhagem Celular , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Lipossomos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , MicroRNAs/síntese química , Microbolhas , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/genética , Ultrassom/métodosRESUMO
MicroRNAs (miRs) are deregulated in cancer and leukemia. Restoring aberrantly downregulated tumor suppressor miRs or antagonizing overexpressed oncogenic miRs in malignant cells by synthetic RNA oligonucleotides represents a potentially novel therapeutic approach in cancer and leukemia. However, given the complex networking and concurrent deregulation of miRs in malignant cells, an effective approach may require concurrent targeting of multiple miRs. Cassette dosing involves simultaneous administration of a mixture of oligonucleotides from the same or different structural classes. However, information on cassette dosing pharmacokinetics, tissue distribution and bioactivity of synthetic miRs is lacking. In this study, three synthetic 2'-methoxyphosphorothioate-miRs (2'-MeOPSmiR16-1, 2'-MeOPSmiR29b and 2'-MeOPSantagomiR155) were administered iv to C57BL/6 mice as a mixture, each at 7.5 mg/kg. Analysis of concentrations of individual miR in plasma and major organ tissues (bone marrow, spleen, liver, brain, heart, kidney and lung) was performed. The mRNA and protein levels of miR's biotargets were monitored sequentially after dosing up to 24 h. Our results demonstrated that these synthetic miRs retain their different individual pharmacokinetic properties and all display three-compartmental pharmacokinetics. 2'-MeOPSmiR16-1 has the longest plasma gamma half-life of 2508 min and lowest total body clearance of 0.0054 L/min·kg, whereas 2'-MeOPSmiR29b has the shortest gamma half-life of 510.6 min and highest total body clearance of 0.042 L/min·kg. The tissue concentrations of all three 2'-MeOPS-modified miR(s)/antagomiR were measurable from 5 min to at least 24 h after dosing, indicating that these concurrently delivered oligonucleotides can reach organ tissues. Importantly, there were biological activities of the concurrently administered miRs which persisted, as shown by the downregulation of specific targets in tested tissues, albeit with variations. Brain was one of the most sensitive tissues with respect to downregulation of mRNA and protein levels of four measured biotargets (e.g., Bcl-2, Mcl-1, DNMT3a and DNMT3b) despite its relatively low miR/antagomiRs levels. We conclude that cassette dosing is applicable to 2'-MeOPS-modified synthetic miRs that are tissue-deliverable and biofunctional without any additional formulation requirement. This study supports future exploration of miR-involved combination therapies.
Assuntos
MicroRNAs/síntese química , MicroRNAs/farmacocinética , Animais , Western Blotting , Encéfalo/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Ensaio de Imunoadsorção Enzimática , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/química , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , DNA Metiltransferase 3BRESUMO
The 3' end was exactly mapped for has-mir-30a-like artificial human microRNAs that specifically recognize the mRNA of the aml1/eto fusion oncogene. The results indicated that the intracellular microRNA pool was heterogeneous in linear size relative to the 3' end, which is necessary to consider in designing and using artificial microRNAs specific for mRNAs of other genes.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , MicroRNAs/síntese química , MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética , RNA Antissenso/síntese química , Regiões 3' não Traduzidas/genética , Células HEK293 , Humanos , MicroRNAs/biossíntese , RNA Antissenso/genética , RNA Mensageiro/genética , Proteína 1 Parceira de Translocação de RUNX1RESUMO
Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification.
Assuntos
Expressão Gênica , MicroRNAs/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de RNA/métodos , MicroRNAs/síntese química , MicroRNAs/genética , Reprodutibilidade dos TestesRESUMO
Recent reports have linked the expression of specific microRNAs (miRNAs) with tumorigenesis and metastasis. Here, we show that microRNA (miR)-16, which is expressed at lower levels in prostate cancer cells, affects the proliferation of human prostate cancer cell lines both in vitro and in vivo. Transient transfection with synthetic miR-16 significantly reduced cell proliferation of 22Rv1, Du145, PPC-1, and PC-3M-luc cells. A prostate cancer xenograft model revealed that atelocollagen could efficiently deliver synthetic miR-16 to tumor cells on bone tissues in mice when injected into tail veins. In the therapeutic bone metastasis model, injection of miR-16 with atelocollagen via tail vein significantly inhibited the growth of prostate tumors in bone. Cell model studies indicate that miR-16 likely suppresses prostate tumor growth by regulating the expression of genes such as CDK1 and CDK2 associated with cell-cycle control and cellular proliferation. There is a trend toward lower miR-16 expression in human prostate tumors versus normal prostate tissues. Thus, this study indicates the therapeutic potential of miRNA in an animal model of cancer metastasis with systemic miRNA injection and suggest that systemic delivery of miR-16 could be used to treat patients with advanced prostate cancer.