Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8019): 164-169, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926580

RESUMO

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Assuntos
Lotus , Fixação de Nitrogênio , Proteínas de Plantas , Sistemas do Segundo Mensageiro , Fatores de Transcrição , Zinco , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Zinco/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(8): e2311522121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38363863

RESUMO

Symbiosis receptor-like kinase SYMRK is required for root nodule symbiosis between legume plants and nitrogen-fixing bacteria. To understand symbiotic signaling from SYMRK, we determined the crystal structure to 1.95 Å and mapped the phosphorylation sites onto the intracellular domain. We identified four serine residues in a conserved "alpha-I" motif, located on the border between the kinase core domain and the flexible C-terminal tail, that, when phosphorylated, drives organogenesis. Substituting the four serines with alanines abolished symbiotic signaling, while substituting them with phosphorylation-mimicking aspartates induced the formation of spontaneous nodules in the absence of bacteria. These findings show that the signaling pathway controlling root nodule organogenesis is mediated by SYMRK phosphorylation, which may help when engineering this trait into non-legume plants.


Assuntos
Fabaceae , Nódulos Radiculares de Plantas , Fosforilação , Nódulos Radiculares de Plantas/metabolismo , Nodulação , Fosfotransferases/metabolismo , Simbiose/genética , Fabaceae/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Proc Natl Acad Sci U S A ; 121(37): e2322217121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39240965

RESUMO

Root exudates are known signaling agents that influence legume root nodulation, but the molecular mechanisms for nonflavonoid molecules remain largely unexplored. The number of soybean root nodules during the initial growth phase shows substantial discrepancies at distinct developmental junctures. Using a combination of metabolomics analyses on root exudates and nodulation experiments, we identify a pivotal role for certain root exudates during the rapid growth phase in promoting nodulation. Phenoxyacetic acid (POA) was found to activate the expression of GmGA2ox10 and thereby facilitate rhizobial infection and the formation of infection threads. Furthermore, POA exerts regulatory control on the miR172c-NNC1 module to foster nodule primordia development and consequently increase nodule numbers. These findings collectively highlight the important role of POA in enhancing nodulation during the accelerated growth phase of soybeans.


Assuntos
Glycine max , Nodulação , Simbiose , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/microbiologia , Glycine max/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Acetatos/metabolismo , Acetatos/farmacologia
4.
Plant Cell ; 35(8): 2929-2951, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177994

RESUMO

Root nodules are major sources of nitrogen for soybean (Glycine max (L.) Merr.) growth, development, production, and seed quality. Symbiotic nitrogen fixation is time-limited, as the root nodule senesces during the reproductive stage of plant development, specifically during seed development. Nodule senescence is characterized by the induction of senescence-related genes, such as papain-like cysteine proteases (CYPs), which ultimately leads to the degradation of both bacteroids and plant cells. However, how nodule senescence-related genes are activated in soybean is unknown. Here, we identified 2 paralogous NAC transcription factors, GmNAC039 and GmNAC018, as master regulators of nodule senescence. Overexpression of either gene induced soybean nodule senescence with increased cell death as detected using a TUNEL assay, whereas their knockout delayed senescence and increased nitrogenase activity. Transcriptome analysis and nCUT&Tag-qPCR assays revealed that GmNAC039 directly binds to the core motif CAC(A)A and activates the expression of 4 GmCYP genes (GmCYP35, GmCYP37, GmCYP39, and GmCYP45). Similar to GmNAC039 and GmNAC018, overexpression or knockout of GmCYP genes in nodules resulted in precocious or delayed senescence, respectively. These data provide essential insights into the regulatory mechanisms of nodule senescence, in which GmNAC039 and GmNAC018 directly activate the expression of GmCYP genes to promote nodule senescence.


Assuntos
Cisteína Proteases , Nódulos Radiculares de Plantas , Nódulos Radiculares de Plantas/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Cisteína Proteases/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas/genética
5.
Plant Cell ; 35(2): 776-794, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36440970

RESUMO

Legumes acquire fixed nitrogen (N) from the soil and through endosymbiotic association with diazotrophic bacteria. However, establishing and maintaining N2-fixing nodules are expensive for the host plant, relative to taking up N from the soil. Therefore, plants suppress symbiosis when N is plentiful and enhance symbiosis when N is sparse. Here, we show that the nitrate transporter MtNRT2.1 is required for optimal nodule establishment in Medicago truncatula under low-nitrate conditions and the repression of nodulation under high-nitrate conditions. The NIN-like protein (NLP) MtNLP1 is required for MtNRT2.1 expression and regulation of nitrate uptake/transport under low- and high-nitrate conditions. Under low nitrate, the gene encoding the C-terminally encoded peptide (CEP) MtCEP1 was more highly expressed, and the exogenous application of MtCEP1 systemically promoted MtNRT2.1 expression in a compact root architecture 2 (MtCRA2)-dependent manner. The enhancement of nodulation by MtCEP1 and nitrate uptake were both impaired in the Mtnrt2.1 mutant under low nitrate. Our study demonstrates that nitrate uptake by MtNRT2.1 differentially affects nodulation at low- and high-nitrate conditions through the actions of MtCEP1 and MtNLP1.


Assuntos
Medicago truncatula , Nitratos , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia
6.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200394

RESUMO

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Assuntos
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/metabolismo , Raízes de Plantas/metabolismo , Mutação , Simbiose/genética , Fosfotransferases/metabolismo , Polissacarídeos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant J ; 118(4): 1136-1154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341846

RESUMO

Rhizobial phosphatidylcholine (PC) is thought to be a critical phospholipid for the symbiotic relationship between rhizobia and legume host plants. A PC-deficient mutant of Sinorhizobium meliloti overproduces succinoglycan, is unable to swim, and lacks the ability to form nodules on alfalfa (Medicago sativa) host roots. Suppressor mutants had been obtained which did not overproduce succinoglycan and regained the ability to swim. Previously, we showed that point mutations leading to altered ExoS proteins can reverse the succinoglycan and swimming phenotypes of a PC-deficient mutant. Here, we report that other point mutations leading to altered ExoS, ChvI, FabA, or RpoH1 proteins also revert the succinoglycan and swimming phenotypes of PC-deficient mutants. Notably, the suppressor mutants also restore the ability to form nodule organs on alfalfa roots. However, nodules generated by these suppressor mutants express only low levels of an early nodulin, do not induce leghemoglobin transcript accumulation, thus remain white, and are unable to fix nitrogen. Among these suppressor mutants, we detected a reduced function mutant of the 3-hydoxydecanoyl-acyl carrier protein dehydratase FabA that produces reduced amounts of unsaturated and increased amounts of shorter chain fatty acids. This alteration of fatty acid composition probably affects lipid packing thereby partially compensating for the previous loss of PC and contributing to the restoration of membrane homeostasis.


Assuntos
Ácidos Graxos , Medicago sativa , Fosfatidilcolinas , Nodulação , Sinorhizobium meliloti , Simbiose , Sinorhizobium meliloti/fisiologia , Sinorhizobium meliloti/genética , Medicago sativa/microbiologia , Medicago sativa/genética , Nodulação/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Mutação , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fixação de Nitrogênio
8.
Plant J ; 118(3): 607-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361340

RESUMO

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Proteínas de Plantas , Raízes de Plantas , Nódulos Radiculares de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Nodulação/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/genética
9.
Plant Physiol ; 195(4): 2542-2550, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38438136

RESUMO

Leguminous plants provide carbon to symbiotic rhizobia in root nodules to fuel the energy-consuming process of nitrogen fixation. The carbon investment pattern from the acquired sources is crucial for shaping the growth regime of the host plants. The autoregulation of nodulation (AON) signaling pathway tightly regulates the number of nodules that form. AON disruption leads to excessive nodule formation and stunted shoot growth. However, the physiological role of AON in adjusting the carbon investment pattern is unknown. Here, we show that AON plays an important role in sustaining shoot water availability, which is essential for promoting carbon investment in shoot growth in Lotus japonicus. We found that AON-defective mutants exhibit substantial accumulation of nonstructural carbohydrates, such as sucrose. Consistent with this metabolic signature, resilience against water-deficit stress was enhanced in the shoots of the AON-defective mutants. Furthermore, the water uptake ability was attenuated in the AON-defective mutants, likely due to the increased ratio of nodulation zone, which is covered with hydrophobic surfaces, on the roots. These results increase our physiological understanding of legume-rhizobia symbiosis by revealing a trade-off between root nodule formation and shoot water availability.


Assuntos
Lotus , Brotos de Planta , Nódulos Radiculares de Plantas , Água , Lotus/genética , Lotus/metabolismo , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Água/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Nodulação , Mutação/genética , Simbiose/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Carbono/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Fixação de Nitrogênio
10.
Plant Cell ; 34(5): 1844-1862, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35146519

RESUMO

Legumes have adaptive mechanisms that regulate nodulation in response to the amount of nitrogen in the soil. In Lotus japonicus, two NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors, LjNLP4 and LjNLP1, play pivotal roles in the negative regulation of nodulation by controlling the expression of symbiotic genes in high nitrate conditions. Despite an improved understanding of the molecular basis for regulating nodulation, how nitrate plays a role in the signaling pathway to negatively regulate this process is largely unknown. Here, we show that nitrate transport via NITRATE TRANSPORTER 2.1 (LjNRT2.1) is a key step in the NLP signaling pathway to control nodulation. A mutation in the LjNRT2.1 gene attenuates the nitrate-induced control of nodulation. LjNLP1 is necessary and sufficient to induce LjNRT2.1 expression, thereby regulating nitrate uptake/transport. Our data suggest that LjNRT2.1-mediated nitrate uptake/transport is required for LjNLP4 nuclear localization and induction/repression of symbiotic genes. We further show that LjNIN, a positive regulator of nodulation, counteracts the LjNLP1-dependent induction of LjNRT2.1 expression, which is linked to a reduction in nitrate uptake. These findings suggest a plant strategy in which nitrogen acquisition switches from obtaining nitrogen from the soil to symbiotic nitrogen fixation.


Assuntos
Lotus , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Solo , Simbiose/fisiologia
11.
Proc Natl Acad Sci U S A ; 119(47): e2206291119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375074

RESUMO

Legumes establish endosymbiotic associations with nitrogen-fixing rhizobia, which they host inside root nodules. Here, specific physiological and morphological adaptations, such as the production of oxygen-binding leghemoglobin proteins and the formation of an oxygen diffusion barrier in the nodule periphery, are essential to protect the oxygen-labile bacterial nitrogenase enzyme. The molecular basis of the latter process remains elusive as the identification of required genes is limited by the epistatic effect of nodule organogenesis over nodule infection and rhizobia accommodation. We overcame this by exploring the phenotypic diversity of Lotus japonicus accessions that uncouple nodule organogenesis from nodule infection when inoculated with a subcompatible Rhizobium strain. Using comparative transcriptomics, we identified genes with functions associated with oxygen homeostasis and deposition of lipid polyesters on cell walls to be specifically up-regulated in infected compared to noninfected nodules. As hydrophobic modification of cell walls is pivotal for creating diffusion barriers like the root endodermis, we focused on two Fatty acyl-CoA Reductase genes that were specifically activated in the root and/or in the nodule endodermis. Mutant lines in a Fatty acyl-CoA Reductase gene expressed exclusively in the nodule endodermis had decreased deposition of polyesters on this cell layer and increased nodule permeability compared to wild-type plants. Oxygen concentrations were significantly increased in the inner cortex of mutant nodules, which correlated with reduced nitrogenase activity, and impaired shoot growth. These results provide the first genetic evidence for the formation of the nodule oxygen diffusion barrier, a key adaptation enabling nitrogen fixation in legume nodules.


Assuntos
Lotus , Rhizobium , Lotus/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Oxigênio/metabolismo , Poliésteres , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Nitrogenase/metabolismo , Lipídeos
12.
Plant J ; 116(1): 7-22, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608631

RESUMO

Strigolactones are a class of phytohormones that are involved in many different plant developmental processes, including the rhizobium-legume nodule symbiosis. Although both positive and negative effects of strigolactones on the number of nodules have been reported, the influence of strigolactones on nodule development is still unknown. Here, by means of the ramosus (rms) mutants of Pisum sativum (pea) cv Terese, we investigated the impact of strigolactone biosynthesis (rms1 and rms5) and signaling (rms3 and rms4) mutants on nodule growth. The rms mutants had more red, that is, functional, and larger nodules than the wild-type plants. Additionally, the increased nitrogen fixation and senescence zones with consequently reduced meristematic and infection zones indicated that the rms nodules developed faster than the wild-type nodules. An enhanced expression of the nodule zone-specific molecular markers for meristem activity and senescence supported the enlarged, fast maturing nodules. Interestingly, the master nodulation regulator, NODULE INCEPTION, NIN, was strongly induced in nodules of all rms mutants but not prior to inoculation. Determination of sugar levels with both bulk and spatial metabolomics in roots and nodules, respectively, hints at slightly increased malic acid levels early during nodule primordia formation and reduced sugar levels at later stages, possibly the consequence of an increased carbon usage of the enlarged nodules, contributing to the enhanced senescence. Taken together, these results suggest that strigolactones regulate the development of nodules, which is probably mediated through NIN, and available plant sugars.


Assuntos
Pisum sativum , Reguladores de Crescimento de Plantas , Pisum sativum/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fixação de Nitrogênio/fisiologia , Simbiose/fisiologia , Açúcares/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
13.
Plant J ; 116(1): 112-127, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344994

RESUMO

Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium-legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium-legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root-to-shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long-distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia-legume symbiosis, possibly by regulating long-distance Pi transport.


Assuntos
Medicago truncatula , Rhizobium , Fósforo/metabolismo , Simbiose/genética , Nódulos Radiculares de Plantas/metabolismo , Rhizobium/fisiologia , Fosfatos/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Verduras/metabolismo , Fixação de Nitrogênio/genética
14.
BMC Plant Biol ; 24(1): 766, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123119

RESUMO

BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.


Assuntos
Medicago truncatula , Micorrizas , Proteínas de Plantas , Nodulação , Simbiose , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Mutação , Genes de Plantas , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Homeostase , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo
15.
Biochem Soc Trans ; 52(3): 1419-1430, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38779952

RESUMO

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis. Recent studies have showed that the success of symbiosis is influenced by the circadian clock of the plant host. Medicago and soybean plants with altered clock mechanisms showed compromised nodulation and reduced plant growth. Furthermore, transcriptomic analyses revealed that multiple genes with key roles in recruitment of rhizobia to plant roots, infection and nodule development were under circadian control, suggesting that appropriate timing of expression of these genes may be important for nodulation. There is also evidence for rhythmic gene expression of key nitrogen fixation genes in the rhizobium symbiont, and temporal coordination between nitrogen fixation in the bacterial symbiont and nitrogen assimilation in the plant host may be important for successful symbiosis. Understanding of how circadian regulation impacts on nodule establishment and function will identify key plant-rhizobial connections and regulators that could be targeted to increase the efficiency of this relationship.


Assuntos
Fabaceae , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Rhizobium , Simbiose , Rhizobium/fisiologia , Rhizobium/metabolismo , Fabaceae/microbiologia , Fabaceae/metabolismo , Ritmo Circadiano/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Relógios Circadianos/fisiologia , Relógios Circadianos/genética
16.
New Phytol ; 241(2): 793-810, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37915139

RESUMO

Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.


Assuntos
Medicago truncatula , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cobre/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Physiol ; 193(3): 1897-1912, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37555448

RESUMO

Symbiotic interactions between legumes and rhizobia lead to the development of root nodules and nitrogen fixation by differentiated bacteroids within nodules. Differentiation of the endosymbionts is reversible or terminal, determined by plant effectors. In inverted repeat lacking clade legumes, nodule-specific cysteine-rich (NCR) peptides control the terminal differentiation of bacteroids. Medicago truncatula contains ∼700 NCR-coding genes. However, the role of few NCR peptides has been demonstrated. Here, we report characterization of fast neutron 2106 (FN2106), a symbiotic nitrogen fixation defective (fix-) mutant of M. truncatula. Using a transcript-based approach, together with linkage and complementation tests, we showed that loss-of-function of NCR343 results in impaired bacteroid differentiation and/or maintenance and premature nodule senescence of the FN2106 mutant. NCR343 was specifically expressed in nodules. Subcellular localization studies showed that the functional NCR343-YFP fusion protein colocalizes with bacteroids in symbiosomes in infected nodule cells. Transcriptomic analyses identified senescence-, but not defense-related genes, as being significantly upregulated in ncr343 (FN2106) nodules. Taken together, results from our phenotypic and transcriptomic analyses of a loss-of-function ncr343 mutant demonstrate an essential role of NCR343 in bacteroid differentiation and/or maintenance required for symbiotic nitrogen fixation.


Assuntos
Medicago truncatula , Medicago truncatula/metabolismo , Fixação de Nitrogênio/genética , Cisteína/metabolismo , Peptídeos/metabolismo , Simbiose , Nódulos Radiculares de Plantas/metabolismo
18.
Plant Physiol ; 191(1): 729-746, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305683

RESUMO

Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix-). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix- nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix- nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.


Assuntos
Cisteína Proteases , Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Simbiose/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Cisteína Proteases/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia
19.
Plant Physiol ; 193(2): 1508-1526, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37427869

RESUMO

Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.


Assuntos
Lotus , Micorrizas , Lotus/microbiologia , Raízes de Plantas/metabolismo , Simbiose/genética , Micorrizas/fisiologia , Fenótipo , Nódulos Radiculares de Plantas/metabolismo
20.
Plant Physiol ; 193(3): 2164-2179, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37610417

RESUMO

The lipid transport protein (LTP) product of the AsE246 gene of Chinese milk vetch (Astragalus sinicus) contributes to the transport of plant-synthesized lipids to the symbiosome membranes (SMs) that are required for nodule organogenesis in this legume. However, the mechanisms used by nodule-specific LTPs remain unknown. In this study, a functional protein in the DnaJ-like family, designated AsDJL1, was identified and shown to interact with AsE246. Immunofluorescence showed that AsDJL1 was expressed in infection threads (ITs) and in nodule cells and that it co-localized with rhizobium, and an immunoelectron microscopy assay localized the protein to SMs. Via co-transformation into Nicotiana benthamiana cells, AsDJL1 and AsE246 displayed subcellular co-localization in the cells of this heterologous host. Co-immunoprecipitation assays confirmed that AsDJL1 interacted with AsE246 in nodules. The essential interacting region of AsDJL1 was determined to be the zinc finger domain at its C-terminus. Chinese milk vetch plants transfected with AsDJL1-RNAi had significantly decreased numbers of ITs, nodule primordia and nodules as well as reduced (by 83%) nodule nitrogenase activity compared with the controls. By contrast, AsDJL1 overexpression led to increased nodule fresh weight and nitrogenase activity. RNAi-AsDJL1 also significantly affected the abundance of lipids, especially digalactosyldiacylglycerol, in early-infected roots and transgenic nodules. Taken together, the results of this study provide insights into the symbiotic functions of AsDJL1, which may participate in lipid transport to SMs and play an essential role in rhizobial infection and nodule organogenesis.


Assuntos
Astrágalo , Fabaceae , Rhizobium , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Astrágalo/metabolismo , Nitrogenase/metabolismo , Lipídeos , Simbiose/genética , Nodulação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA