Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.387
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(6): 100764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604503

RESUMO

Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Proteômica , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Processamento Pós-Transcricional do RNA , Proteoma/metabolismo , Multiômica
2.
Proc Natl Acad Sci U S A ; 120(42): e2307914120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816055

RESUMO

Cancer-associated fibroblasts (CAFs) play vital roles in establishing a suitable tumor microenvironment. In this study, RNA sequencing data revealed that CAFs could promote cell proliferation, angiogenesis, and ECM reconstitution by binding to integrin families and activating PI3K/AKT pathways in esophageal squamous cell carcinoma (ESCC). The secretions of CAFs play an important role in regulating these biological activities. Among these secretions, we found that MFGE8 is specifically secreted by CAFs in ESCC. Additionally, the secreted MFGE8 protein is essential in CAF-regulated vascularization, tumor proliferation, drug resistance, and metastasis. By binding to Integrin αVß3/αVß5 receptors, MFGE8 promotes tumor progression by activating both the PI3K/AKT and ERK/AKT pathways. Interestingly, the biological function of MFGE8 secreted by CAFs fully demonstrated the major role of CAFs in ESCC and its mode of mechanism, showing that MFGE8 could be a driver factor of CAFs in remodeling the tumor environment. In vivo treatment targeting CAFs-secreting MFGE8 or its receptor produced significant inhibitory effects on ESCC growth and metastasis, which provides an approach for the treatment of ESCC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fibroblastos/metabolismo , Microambiente Tumoral , Antígenos de Superfície/metabolismo , Proteínas do Leite/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(20): e2220334120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155893

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Ratos , Animais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Antagomirs , Zinco/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Inflamação/complicações , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Ligação a RNA/metabolismo
4.
Exp Cell Res ; 439(1): 113963, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382806

RESUMO

The communication between tumor-derived exosomes and macrophages plays an important role in facilitating the progression of tumors. However, the regulatory mechanisms by which exosomes regulate tumor progression in esophageal squamous cell carcinoma (ESCC) have not been fully elucidated. We constructed a coculture system containing an ESCC cell line and macrophages using a Transwell chamber. We isolated exosomes from the conditioned medium of cancer cells, and characterized them with transmission electron microscopy and western blotting and used then to treat macrophages. We used co-immunoprecipitation to evaluate the interaction between hyaluronidase 1 (HYAL1) and Aurora B kinase (AURKB). We evaluated HYAL1 and AURKB expression in tissues and cells with quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blotting. We used RT-qPCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry to detect macrophage polarization. We assessed cell viability, invasion and migration with the cell counting kit-8 (CCK-8), Transwell and wound healing assays. HYAL1 was highly expressed in ESCC tissues and cells and cancer cell-derived exosomes, and exosomes can be delivered to macrophages through the cancer cell-derived exosomes. The exosomes extracted from HYAL1-overexpressed ESCC cells suppressed M1 macrophage polarization and induced M2 macrophage polarization, thereby promoting ESCC cell viability, invasion and migration. HYAL1 silencing in ESCC cells produced the opposite effects on macrophage polarization and cancer cell functions. We found that HYAL1 interacted with AURKB and further activated the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in macrophages. In conclusion, ESCC-derived exosomes containing HYAL1 facilitate M2 macrophage polarization by targeting AURKB to active the PI3K/AKT signaling pathway, which in turn promotes ESCC progression.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Exossomos , Hialuronoglucosaminidase , Macrófagos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Humanos , Exossomos/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Macrófagos/metabolismo , Macrófagos/patologia , Linhagem Celular Tumoral , Movimento Celular , Transdução de Sinais , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Proliferação de Células , Polaridade Celular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ativação de Macrófagos , Animais , Masculino
5.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457049

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328063

RESUMO

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Movimento Celular , Neoplasias Esofágicas/metabolismo , Proteômica
7.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076047

RESUMO

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Proteômica , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação , Estresse Oxidativo , Apoptose , Glicólise
8.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387281

RESUMO

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Associados a Tumor , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio , RNA Interferente Pequeno/genética , Proliferação de Células , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL22/farmacologia , Quimiocina CCL22/uso terapêutico
9.
J Proteome Res ; 23(7): 2552-2560, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38864484

RESUMO

Detection of exhaled volatile organic compounds (VOCs) is promising for noninvasive screening of esophageal cancer (EC). Cellular VOC analysis can be used to investigate potential biomarkers. Considering the crucial role of methionine (Met) during cancer development, exploring associated abnormal metabolic phenotypes becomes imperative. In this work, we employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the volatile metabolic profiles of EC cells (KYSE150) and normal esophageal epithelial cells (HEECs) under a Met regulation strategy. Using untargeted approaches, we analyzed the metabolic VOCs of the two cell types and explored the differential VOCs between them. Subsequently, we utilized targeted approaches to analyze the differential VOCs in both cell types under gradient Met culture conditions. The results revealed that there were five/six differential VOCs between cells under Met-containing/Met-free culture conditions. And the difference in levels of two characteristic VOCs (1-butanol and ethyl 2-methylbutyrate) between the two cell types intensified with the increase of the Met concentration. Notably, this is the first report on VOC analysis of EC cells and the first to consider the effect of Met on volatile metabolic profiles. The present work indicates that EC cells can be distinguished through VOCs induced by Met regulation, which holds promise for providing novel insights into diagnostic strategies.


Assuntos
Neoplasias Esofágicas , Cromatografia Gasosa-Espectrometria de Massas , Metionina , Compostos Orgânicos Voláteis , Metionina/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Linhagem Celular Tumoral , Microextração em Fase Sólida , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos
10.
J Cell Mol Med ; 28(6): e18129, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38426936

RESUMO

ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , ATP Citrato (pro-S)-Liase , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Lipídeos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
11.
J Cell Mol Med ; 28(8): e18294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652109

RESUMO

Forkhead box protein 1 (FOXP1) serves as a tumour promoter or suppressor depending on different cancers, but its effect in oesophageal squamous cell carcinoma has not been fully elucidated. This study investigated the role of FOXP1 in oesophageal squamous cell carcinoma through bioinformatics analysis and experimental verification. We determined through public databases that FOXP1 expresses low in oesophageal squamous cell carcinoma compared with normal tissues, while high expression of FOXP1 indicates a better prognosis. We identified potential target genes regulated by FOXP1, and explored the potential biological processes and signalling pathways involved in FOXP1 in oesophageal squamous cell carcinoma through GO and KEGG enrichment, gene co-expression analysis, and protein interaction network construction. We also analysed the correlation between FOXP1 and tumour immune infiltration levels. We further validated the inhibitory effect of FOXP1 on the proliferation of oesophageal squamous cell carcinoma cells through CCK-8, colony formation and subcutaneous tumour formation assays. This study revealed the anticarcinogenic effect of FOXP1 in oesophageal squamous cell carcinoma, which may serve as a novel biological target for the treatment of tumour.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras , Humanos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Biologia Computacional/métodos , Camundongos , Prognóstico , Mapas de Interação de Proteínas/genética , Transdução de Sinais , Redes Reguladoras de Genes , Camundongos Nus
12.
Lab Invest ; 104(5): 102042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431117

RESUMO

Esophageal squamous cell carcinoma stands as a notably aggressive malignancy within the digestive system. In cases of early esophageal cancer without lymph node metastasis, endoscopic surgical resection offers a viable alternative, often resulting in improved patient quality of life. However, the paucity of methods to preoperatively ascertain lymph node involvement complicates surgical planning. SOX4 gene was previously found to be highly associated with invasive metastasis in our work through single-cell RNA sequencing on 5 paired tumor/peritumor tissues. This research included the collection of 124 tissue samples from 106 patients (106 tumor and 18 lymph node specimens). Samples were methodically arranged into a tissue microarray and treated with immunohistochemical staining. Statistical analysis was conducted to assess the relationship between them. In the univariate analysis, 3 factors were identified as statistically significant in relation to lymph node metastasis: T category (P = .014), vascular invasion (P < .001), and SOX4 intensity (P = .001). Additionally, when evaluating SOX4 intensity alongside other clinical indicators, SOX4 was shown to independently influence lymph node metastasis. Further, the multivariate analysis revealed that vascular invasion (P < .001) and SOX4 intensity (P = .003) were significantly associated with lymph node metastasis, exhibiting hazard ratios of 10.174 and 7.142, respectively. The results of our study indicate that both SOX4 expression and vascular invasion serve as predictors of lymph node metastasis in patients diagnosed with category T1 esophageal squamous cell carcinoma, underscoring the potential utility of SOX4 in prognostic evaluations.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metástase Linfática , Fatores de Transcrição SOXC , Humanos , Masculino , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Feminino , Pessoa de Meia-Idade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/secundário , Carcinoma de Células Escamosas do Esôfago/cirurgia , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linfonodos/patologia , Linfonodos/metabolismo , Adulto , Prognóstico
13.
Cancer Sci ; 115(7): 2254-2268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38746998

RESUMO

Esophageal squamous cell carcinoma (ESCC) represents a frequently seen malignancy with high prevalence worldwide. Although current studies have shown that Wilms' tumor 1-associated protein (WTAP), a major part in the methyltransferase complex, is involved in various tumor pathological processes, its specific role in ESCC remains unclear. Therefore, the present work focused on exploring WTAP's function and mechanism in ESCC progression using clinical ESCC specimens, ESCC cells, and mammalian models. Firstly, we proved WTAP was significantly upregulated within ESCC, and WTAP mRNA expression showed a good diagnostic performance for ESCC. Functionally, WTAP positively regulated in-vivo and in-vitro ESCC cells' malignant phenotype through the AKT-mTOR signaling pathway. Meanwhile, WTAP positively regulated the N6-methyladenosine (m6A) modification levels in ESCC cells. Protein tyrosine phase type IVA member 1 (PTP4A1) was confirmed to be the m6A target of WTAP, and WTAP positively regulated the expression of PTP4A1. Further study revealed that PTP4A1 showed high expression within ESCC. Silencing PTP4A1 inhibited the AKT-mTOR signaling pathway to suppress ESCC cells' proliferation. Rescue experiments showed that silencing PTP4A1 partially reversed the WTAP-promoting effect on ESCC cells' proliferation ability. Mechanistically, WTAP regulated PTP4A1 expression to activate the AKT-mTOR pathway, promoting the proliferation of ESCC cells. Our study demonstrated that WTAP regulates the progression of ESCC through the m6A-PTP4A1-AKT-mTOR signaling axis and that WTAP is a potential target for diagnosing and treating ESCC.


Assuntos
Adenosina , Proteínas de Ciclo Celular , Proliferação de Células , Epigênese Genética , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Processamento de RNA , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Regulação para Cima
14.
Cancer Sci ; 115(5): 1622-1633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429886

RESUMO

Advanced gastric and gastroesophageal junction cancers (GC/GEJCs) harbor diverse molecular signatures, highlighting the need for intricate evaluations to identify potential therapeutic targets. Although whole-transcriptome sequencing (WTS) has emerged as a useful tool for understanding these molecular intricacies, its clinical implications have yet to be fully elucidated. This study evaluated the correlation between immunohistochemistry (IHC) and WTS, compared their clinical significance, and identified potential therapeutic targets undetectable through IHC alone. We enrolled 140 patients with advanced GC/GEJC and assessed them using IHC for six pivotal biomarkers: claudin-18 (CLDN18), human epidermal growth factor receptor 2 (HER2), multiple receptor tyrosine kinases (RTKs), and programmed death ligand 1 (PD-L1). Concurrently, WTS was employed as part of the analyses in MONSTAR-SCREEN-2, a multicenter multiomics study. IHC analysis revealed 16.4% HER2, 39.3% CLDN18 (2+/3 + ≥75%), and 15.8% PD-L1 (combined positive score ≥ 10) positivity, among other molecular markers. Significant correlations were observed between IHC and WTS for all six pivotal biomarkers. Among nineteen HER2 IHC-positive patients treated with anti-HER2 therapeutics, ERBB2 status in WTS was significantly associated with progression-free survival (ERBB2-high vs. -low: median 9.0 vs. 5.6 months, log-rank p = 0.046). IHC-based molecular profiling revealed significantly high expression of CLDN18 in RTK-negative patients, with 78.4% positive for either CLDN18 or PD-L1. Additionally, WTS revealed elevated expression of pivotal biomarkers in patients displaying negative targetable biomarkers via IHC. Our findings highlighted the significant correlation between IHC and WTS, reinforcing the clinical utility of WTS. A subset with IHC-negative but WTS-positive status may benefit from specific biomarker-targeted therapies.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Junção Esofagogástrica , Imuno-Histoquímica , Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Masculino , Feminino , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Idoso , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Junção Esofagogástrica/patologia , Junção Esofagogástrica/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Claudinas/genética , Claudinas/metabolismo , Adulto , Idoso de 80 Anos ou mais , Transcriptoma , Perfilação da Expressão Gênica/métodos
15.
Crit Rev Eukaryot Gene Expr ; 34(6): 71-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912964

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignancy of the gastrointestinal tract with a single therapeutic option and a lack of effective clinical therapeutic biomarkers. Extracellular matrix (ECM) remodeling plays a pro-carcinogenic role in a variety of malignancies, but its role in esophageal squamous carcinoma remains to be elucidated. In this study, we examined the expression levels of ECM remodeling markers in 71 pairs of esophageal squamous carcinoma tissues and normal tissues adjacent to the carcinoma using immunohistochemical staining, and analyzed their relationship with clinicopathological features and prognosis. The results suggested that extracellular matrix remodeling markers (integrin αV, fibronectin, MMP9) were abnormally highly expressed in esophageal squamous carcinoma tissues. There was a statistically significant difference between the positive expression of ECM remodeling and the TNM stage of esophageal squamous carcinoma, and there was no statistically significant correlation with age, gender and carcinoembryonic antigen expression, differentiation degree, T stage, and lymph node metastasis. Overall survival rate and overall survival time were significantly lower in patients with positive ECM remodeling expression, which was an independent risk factor for poor prognosisof esophageal squamous carcinoma.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Matriz Extracelular , Fibronectinas , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Masculino , Feminino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Matriz Extracelular/metabolismo , Prognóstico , Pessoa de Meia-Idade , Fibronectinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Idoso , Metaloproteinase 9 da Matriz/metabolismo , Integrina alfaV/metabolismo , Integrina alfaV/genética , Estadiamento de Neoplasias , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Adulto
16.
Br J Cancer ; 130(11): 1770-1782, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600327

RESUMO

BACKGROUND: Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS: Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS: Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS: This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Osteopontina , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Animais , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Microambiente Tumoral/imunologia , Osteopontina/genética , Osteopontina/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Prognóstico , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética
17.
J Gene Med ; 26(3): e3667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442944

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer with relatively high mortality worldwide. Serine peptidase inhibitor Kazal-type 5 (SPINK5) is reported to be downregulated in ESCC. However, its explicit role in ESCC remains further investigation. METHODS: The tumor tissues and adjacent non-cancerous tissues were obtained from 196 patients with ESCC for the determination of SPINK5 mRNA levels. Additionally, the relationship between SPINK5 mRNA levels and clinicopathological features of ESCC patients was explored. The effects of SPINK5 on the invasion and migration of ESCC cells were assessed using Transwell assays. Furthermore, SPINK5 mRNA and LEKTI protein were measured in ESCC cell lines after treatment with poly (I:C), lipopolysaccharide (LPS) or unmethylated CpG DNA. Moreover, the correlation between expression of SPINK5 and nuclear factor-kappa B (NF-κB) signaling pathway-related genes was analyzed in the TCGA-ESCC cohort, and the effects of SPINK5 on NF-κB transcription was analyzed using a luciferase reporter gene assay. Finally, the correlations between SPINK5 and infiltration of immune cells, immune scores, stromal scores and ESTIMATE (i.e., Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores were explored. RESULTS: SPINK5 mRNA levels were downregulated in tumor tissues, which was significantly correlated with higher lymph node metastases. Overexpressed SPINK5 inhibited cell invasion and migration in ESCC cell lines. Mechanistically, LPS-induced activation of Toll-like receptor 4 (TLR4) decreased SPINK5 mRNA and LEKTI in KYSE150 and KYSE70 cells. Spearman correlation analysis revealed that SPINK5 mRNA was significantly negatively correlated with a total of seven NF-κB signaling pathway-related genes in TCGA-ESCC patients. Moreover, downregulation of SPINK5 increased and upregulation of SPINK5 decreased the activity of the NF-κB promoter in HEK293T cells. Finally, immune cells infiltration analysis revealed that SPINK5 was significantly correlated with the infiltration of various immune cells, stromal scores, immune scores and ESTIMATE scores. CONCLUSIONS: SPINK5 plays critical roles in the TLR4/NF-κB pathway and immune cells infiltration, which might contribute to the ESCC metastasis. The findings of the present study may provide a promising biomarker for the diagnosis and treatment of esophageal squamous cell carcinoma.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Inibidor de Serinopeptidase do Tipo Kazal 5 , Humanos , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Células HEK293 , Lipopolissacarídeos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Receptor 4 Toll-Like/metabolismo
18.
J Gene Med ; 26(6): e3708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837511

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Assuntos
Movimento Celular , Proliferação de Células , Quimiocina CCL2 , Células Epiteliais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Lisofosfolipídeos , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Progressão da Doença , Transdução de Sinais/efeitos dos fármacos , Esôfago/metabolismo , Esôfago/patologia , Esôfago/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos
19.
Cancer Immunol Immunother ; 73(8): 144, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832979

RESUMO

BACKGROUND: The beneficial effects of first-line programmed death-1 (PD-1) inhibitors plus chemotherapy in patients with low programmed death-ligand 1 (PD-L1)-expressing advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma are controversial. METHODS: We conducted a retrospective analysis of patients with G/GEJ adenocarcinoma who had undergone first-line treatment with PD-1 inhibitors plus chemotherapy between October 2017 and May 2022. The primary outcomes were objective response rate (ORR) and progression-free survival (PFS). SPSS software V27.0 was used for data analysis. RESULTS: Of 345 enrolled patients, 290 had measurable lesions. The overall ORR was 59.3%. PD-L1 status was available in 171 patients, and 67.8% of them were considered as low PD-L1 expression level (combined positive score (CPS) < 5). Patients with PD-L1 CPS < 5 showed a lower response rate (51.1% vs 70.8%, P = 0.024) and a worse PFS (P = 0.009) compared to those with PD-L1 CPS ≥ 5. In the PD-L1 low-expression cohort, patients with non-diffuse type, GEJ cancer, synchronous metastasis, distant lymph node metastasis, liver metastasis, non-peritoneal metastasis, and HER2 positive were significantly associated with higher response rates to PD-1 inhibitors plus chemotherapy (P < 0.05). The presence of peritoneal metastasis (P = 0.028) and diffuse type (P = 0.046) were identified as independent predictors of poor PFS in multivariate analysis of the PD-L1 CPS < 5 subgroup. When evaluated for correlation with overall survival (OS) in the PD-L1 low-expression subgroup, peritoneal metastasis was found to be the only independent prognostic factor of an increased risk of death (hazard ratio: 2.31, 95% CI 1.09-4.90; P = 0.029). CONCLUSIONS: PD-L1 CPS ≥ 5 is significantly associated with improved response and extended PFS in G/GEJ cancer patients treated with a combination of PD-1 inhibitors and chemotherapy. Specific subgroups within the low PD-L1-expressing population, such as those with non-diffuse-type tumors and without peritoneal metastases, may also benefit from immunotherapy combined with chemotherapy.


Assuntos
Adenocarcinoma , Protocolos de Quimioterapia Combinada Antineoplásica , Antígeno B7-H1 , Biomarcadores Tumorais , Neoplasias Esofágicas , Junção Esofagogástrica , Inibidores de Checkpoint Imunológico , Neoplasias Gástricas , Humanos , Masculino , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Feminino , Pessoa de Meia-Idade , Junção Esofagogástrica/patologia , Junção Esofagogástrica/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Idoso , Estudos Retrospectivos , Biomarcadores Tumorais/metabolismo , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Idoso de 80 Anos ou mais , Prognóstico
20.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353358

RESUMO

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Assuntos
Benzenoacetamidas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Glutaminase , Glicólise , Piruvato Desidrogenase Quinase de Transferência de Acetil , Tiadiazóis , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Glutaminase/genética , Glutaminase/metabolismo , Glicólise/genética , Camundongos Nus , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA