Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.376
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(1): 364-382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652034

RESUMO

Barley produces several specialized metabolites, including five α-, ß-, and γ-hydroxynitrile glucosides (HNGs). In malting barley, presence of the α-HNG epiheterodendrin gives rise to undesired formation of ethyl carbamate in the beverage production, especially after distilling. Metabolite-GWAS identified QTLs and underlying gene candidates possibly involved in the control of the relative and absolute content of HNGs, including an undescribed MATE transporter. By screening 325 genetically diverse barley accessions, we discovered three H. vulgare ssp. spontaneum (wild barley) lines with drastic changes in the relative ratios of the five HNGs. Knock-out (KO)-lines, isolated from the barley FIND-IT resource and each lacking one of the functional HNG biosynthetic genes (CYP79A12, CYP71C103, CYP71C113, CYP71U5, UGT85F22 and UGT85F23) showed unprecedented changes in HNG ratios enabling assignment of specific and mutually dependent catalytic functions to the biosynthetic enzymes involved. The highly similar relative ratios between the five HNGs found across wild and domesticated barley accessions indicate assembly of the HNG biosynthetic enzymes in a metabolon, the functional output of which was reconfigured in the absence of a single protein component. The absence or altered ratios of the five HNGs in the KO-lines did not change susceptibility to the fungal phytopathogen Pyrenophora teres causing net blotch. The study provides a deeper understanding of the organization of HNG biosynthesis in barley and identifies a novel, single gene HNG-0 line in an elite spring barley background for direct use in breeding of malting barley, eliminating HNGs as a source of ethyl carbamate formation in whisky production.


Assuntos
Glucosídeos , Hordeum , Hordeum/genética , Hordeum/metabolismo , Hordeum/microbiologia , Glucosídeos/metabolismo , Nitrilas/metabolismo , Locos de Características Quantitativas , Uretana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla
2.
PLoS Pathog ; 19(8): e1011226, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585450

RESUMO

Contact insecticides are primarily used for the control of Anopheles malaria vectors. These chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality compared to control mosquitoes, coincident with a corresponding increase in 14C-deltamethrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly localized in the legs and head appendages, and more specifically, the apical part of the epidermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect role, based on the orthology with other insect ABCH transporters involved with lipid transport and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slowing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs. Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiological homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/metabolismo , Resistência a Inseticidas , Mosquitos Vetores/genética , Inseticidas/farmacologia , Nitrilas/toxicidade , Nitrilas/metabolismo , Trifosfato de Adenosina/metabolismo , Controle de Mosquitos
3.
J Struct Biol ; 216(2): 108093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615726

RESUMO

Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.


Assuntos
Aminoidrolases , Microscopia Crioeletrônica , Nitrilas , Multimerização Proteica , Rhodococcus , Aminoidrolases/química , Aminoidrolases/metabolismo , Aminoidrolases/ultraestrutura , Microscopia Crioeletrônica/métodos , Rhodococcus/enzimologia , Nitrilas/química , Nitrilas/metabolismo , Especificidade por Substrato , Modelos Moleculares , Domínio Catalítico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Catálise
4.
J Am Chem Soc ; 146(30): 21061-21068, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39039999

RESUMO

Aerocyanidin and amycomicin are two antibiotics derived from long-chain acids with a rare epoxy isonitrile moiety, the complexity of which renders the total synthesis of these two natural products rather challenging. How this functionality is biosynthesized has also remained obscure. While the biosynthetic gene clusters for these compounds have been identified, both appear to be deficient in genes encoding enzymes seemingly necessary for the oxidative modifications observed in these antibiotics. Herein, the biosynthetic pathways of aerocyanidin and amycomicin are fully elucidated. They share a conserved pathway to isonitrile intermediates that involves a bifunctional thioesterase and a nonheme iron α-ketoglutarate-dependent enzyme. In both cases, the isonitrile intermediates are then loaded onto an acyl carrier protein (ACP) catalyzed by a ligase. The isonitrile-tethered ACP is subsequently processed by polyketide synthase(s) to undergo chain extension, thereby assembling a long-chain γ-hydroxy isonitrile acid skeleton. The epoxide is installed by the cupin domain-containing protein AecF to conclude the biosynthesis of aerocyanidin. In contrast, three P450 enzymes AmcB, AmcC, and AmcQ are involved in epoxidation and keto formation to finalize the biosynthesis of amycomicin. These results thus explain the sequence of oxidation events that result in the final structures of aerocyanidin and amycomicin as well as the biosynthesis of the key γ-hydroxy epoxy isonitrile functional group.


Assuntos
Antibacterianos , Nitrilas , Antibacterianos/química , Antibacterianos/biossíntese , Nitrilas/química , Nitrilas/metabolismo , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Estrutura Molecular
5.
Nat Prod Rep ; 41(4): 649-671, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193577

RESUMO

Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.


Assuntos
Nitrilas , Plantas , Nitrilas/metabolismo , Nitrilas/química , Estrutura Molecular , Plantas/metabolismo , Animais
6.
Chembiochem ; 25(11): e202400118, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526556

RESUMO

Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Šresolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.


Assuntos
Aldeído Liases , Mutagênese Sítio-Dirigida , Animais , Acetonitrilas/química , Acetonitrilas/metabolismo , Aldeído Liases/metabolismo , Aldeído Liases/química , Aldeído Liases/genética , Benzaldeídos/metabolismo , Benzaldeídos/química , Cristalografia por Raios X , Modelos Moleculares , Nitrilas/metabolismo , Nitrilas/química , Estereoisomerismo , Artrópodes/enzimologia , Artrópodes/genética
7.
Plant Physiol ; 194(1): 329-346, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584327

RESUMO

Aldoximes are well-known metabolic precursors for plant defense compounds such as cyanogenic glycosides, glucosinolates, and volatile nitriles. They are also defenses themselves produced in response to herbivory; however, it is unclear whether aldoximes can be stored over a longer term as defense compounds and how plants protect themselves against the potential autotoxic effects of aldoximes. Here, we show that the Neotropical myrmecophyte tococa (Tococa quadrialata, recently renamed Miconia microphysca) accumulates phenylacetaldoxime glucoside (PAOx-Glc) in response to leaf herbivory. Sequence comparison, transcriptomic analysis, and heterologous expression revealed that 2 cytochrome P450 enzymes, CYP79A206 and CYP79A207, and the UDP-glucosyltransferase UGT85A123 are involved in the formation of PAOx-Glc in tococa. Another P450, CYP71E76, was shown to convert PAOx to the volatile defense compound benzyl cyanide. The formation of PAOx-Glc and PAOx in leaves is a very local response to herbivory but does not appear to be regulated by jasmonic acid signaling. In contrast to PAOx, which was only detectable during herbivory, PAOx-Glc levels remained high for at least 3 d after insect feeding. This, together with the fact that gut protein extracts of 3 insect herbivore species exhibited hydrolytic activity toward PAOx-Glc, suggests that the glucoside is a stable storage form of a defense compound that may provide rapid protection against future herbivory. Moreover, the finding that herbivory or pathogen elicitor treatment also led to the accumulation of PAOx-Glc in 3 other phylogenetically distant plant species suggests that the formation and storage of aldoxime glucosides may represent a widespread plant defense response.


Assuntos
Glucosídeos , Herbivoria , Glucosídeos/metabolismo , Nitrilas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oximas/metabolismo , Folhas de Planta/metabolismo
8.
Plant Cell Environ ; 47(6): 2127-2145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38419355

RESUMO

Rhizosphere microbial community assembly results from microbe-microbe-plant interactions mediated by small molecules of plant and microbial origin. Studies with Arabidopsis thaliana have indicated a critical role of glucosinolates in shaping the root and/or rhizosphere microbial community, likely through breakdown products produced by plant or microbial myrosinases inside or outside of the root. Plant nitrile-specifier proteins (NSPs) promote the formation of nitriles at the expense of isothiocyanates upon glucosinolate hydrolysis with unknown consequences for microbial colonisation of roots and rhizosphere. Here, we generated the A. thaliana triple mutant nsp134 devoid of nitrile formation in root homogenates. Using this line and mutants lacking aliphatic or indole glucosinolate biosynthesis pathways or both, we found bacterial/archaeal alpha-diversity of the rhizosphere to be affected only by the ability to produce aliphatic glucosinolates. In contrast, bacterial/archaeal community composition depended on functional root NSPs as well as on pathways of aliphatic and indole glucosinolate biosynthesis. Effects of NSP deficiency were strikingly distinct from those of impaired glucosinolate biosynthesis. Our results demonstrate that rhizosphere microbial community assembly depends on functional pathways of both glucosinolate biosynthesis and breakdown in support of the hypothesis that glucosinolate hydrolysis by myrosinases and NSPs happens before secretion of products to the rhizosphere.


Assuntos
Arabidopsis , Archaea , Bactérias , Glucosinolatos , Raízes de Plantas , Rizosfera , Glucosinolatos/metabolismo , Glucosinolatos/biossíntese , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Bactérias/genética , Archaea/metabolismo , Archaea/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutação , Nitrilas/metabolismo
9.
J Biol Inorg Chem ; 29(4): 427-439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796812

RESUMO

Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile; TPN) is an environmentally persistent fungicide that sees heavy use in the USA and is highly toxic to aquatic species and birds, as well as a probable human carcinogen. The chlorothalonil dehalogenase from Pseudomonas sp. CTN-3 (Chd, UniProtKB C9EBR5) degrades TPN to its less toxic 4-OH-TPN analog making it an exciting candidate for the development of a bioremediation process for TPN; however, little is currently known about its catalytic mechanism. Therefore, an active site residue histidine-114 (His114) which forms a hydrogen bond with the Zn(II)-bound water/hydroxide and has been suggested to be the active site acid/base, was substituted by an Ala residue. Surprisingly, ChdH114A exhibited catalytic activity with a kcat value of 1.07 s-1, ~ 5% of wild-type (WT) Chd, and a KM of 32 µM. Thus, His114 is catalytically important but not essential. The electronic and structural aspects of the WT Chd and ChdH114A active sites were examined using UV-Vis and EPR spectroscopy on the catalytically competent Co(II)-substituted enzyme as well as all-atomistic molecular dynamics (MD) simulations. Combination of these data suggest His114 can quickly and reversibly move nearly 2 Å between one conformation that facilitates catalysis and another that enables product egress and active site recharge. In light of experimental and computational data on ChdH114A, Asn216 appears to play a role in substrate binding and preorganization of the transition-state while Asp116 likely facilitates the deprotonation of the Zn(II)-bound water in the absence of His114. Based on these data, an updated proposed catalytic mechanism for Chd is presented.


Assuntos
Histidina , Nitrilas , Pseudomonas , Pseudomonas/enzimologia , Pseudomonas/metabolismo , Nitrilas/metabolismo , Nitrilas/química , Histidina/química , Histidina/metabolismo , Hidrólise , Biocatálise , Domínio Catalítico , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Halogenação , Hidrolases/metabolismo , Hidrolases/química
10.
J Org Chem ; 89(16): 11446-11454, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39113180

RESUMO

An enzyme catalyzed strategy for the synthesis of a chiral hydrazine from 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 is presented. An imine reductase (IRED) from Streptosporangium roseum was identified to catalyze the reaction between 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 to produce trace amounts of (R)-3-cyclopentyl-3-hydrazineylpropanenitrile 4. We employed a 2-fold approach to optimize the catalytic performance of this enzyme. First, a transition state analogue (TSA) model was constructed to illuminate the enzyme-substrate interactions. Subsequently, the Enzyme_design and Funclib methods were utilized to predict mutants for experimental evaluation. Through three rounds of site-directed mutagenesis, site saturation mutagenesis, and combinatorial mutagenesis, we obtained mutant M6 with a yield of 98% and an enantiomeric excess (ee) of 99%. This study presents an effective method for constructing a hydrazine derivative via IRED-catalyzed reductive amination of ketone and hydrazine. Furthermore, it provides a general approach for constructing suitable enzymes, starting from nonreactive enzymes and gradually enhancing their catalytic activity through active site modifications.


Assuntos
Biocatálise , Nitrilas , Oxirredutases , Pirazóis , Pirimidinas , Nitrilas/química , Nitrilas/metabolismo , Pirimidinas/química , Pirimidinas/biossíntese , Pirimidinas/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Pirazóis/química , Pirazóis/metabolismo , Iminas/química , Iminas/metabolismo , Estrutura Molecular , Hidrazinas/química , Engenharia de Proteínas
11.
Analyst ; 149(17): 4454-4463, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39022813

RESUMO

Etravirine (ETV) is an antiretroviral agent that belongs to the class of non-nucleoside reverse transcriptase inhibitors. This study explores the uptake and distribution of ETV in human aortic endothelial cells (HAECs) using Raman spectroscopy combined with chemometrics. The distinctive chemical structure of ETV facilitates tracking of its uptake by observing the Raman band at 2225 cm-1 in the Raman-silent region. The perinuclear distribution pattern in HAECs depends on drug concentration and incubation time. The uptake of ETV is observed within 5 minutes at a concentration of 10 µM, as evidenced by Raman images. Lower ETV concentrations, reflective of those found in human plasma, are detectable in HAECs by applying chemometric methods to Raman spectra from the perinuclear region. The ETV accumulation process is crucial in advancing our understanding of the drug's impact on biochemical alterations within endothelial cells. Additionally, ETV emerges as a promising Raman reporter for marking subcellular compartments, leveraging the 2225 cm-1 band in the cellular Raman silent region. This research contributes valuable insights into the behavior of ETV at the subcellular level, shedding light on its potential applications and impact on subcellular dynamics.


Assuntos
Aorta , Células Endoteliais , Nitrilas , Piridazinas , Pirimidinas , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Nitrilas/química , Nitrilas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/química , Pirimidinas/química , Pirimidinas/metabolismo , Aorta/metabolismo , Aorta/citologia , Piridazinas/química , Piridazinas/metabolismo , Análise de Célula Única/métodos , Células Cultivadas
12.
Bioorg Med Chem Lett ; 113: 129979, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39341398

RESUMO

Lymphocyte activation gene 3 (LAG-3) is an inhibitory immune checkpoint crucial for suppressing the immune response against cancer. Blocking LAG-3 interactions enables T cells to recover their cytotoxic capabilities and diminishes the immunosuppressive effects of regulatory T cells. A cyclic peptide (Cys-Val-Pro-Met-Thr-Tyr-Arg-Ala-Cys, disulfide bridge: 1-9) was recently reported as a LAG-3 inhibitor. Based on this peptide, we designed 19 derivatives by substituting tyrosine residue to maximize LAG-3 inhibition. Screening via TR-FRET assay identified 8 outperforming derivatives, with cyclic peptides 12 [Tyr6(L-3-CN-Phe)], 13 [Tyr6(L-4-NH2-Phe)], and 17 [Tyr6(L-3,5-DiF-Phe)] as top candidates. Cyclic peptide 12 exhibited the highest inhibition (IC50 = 4.45 ± 1.36 µM). MST analysis showed cyclic peptides 12 and 13 bound LAG-3 with KD values of 2.66 ± 2.06 µM and 1.81 ± 1.42 µM, respectively, surpassing the original peptide (9.94 ± 4.13 µM). Docking simulations revealed that cyclic peptide 12 exhibited significantly enhanced binding, with a docking score of -7.236 kcal/mol, outperforming the original peptide (-5.236 kcal/mol) and cyclic peptide 5 (L-4-CN-Phe) (-5.131 kcal/mol). A per-residue decomposition of the interaction energy indicated that the 3-cyano group in cyclic peptide 12 contributes to a more favorable conformation, yielding an interaction energy of -9.22 kcal/mol with Phe443 of MHC-II, compared to -6.03 kcal/mol and -5.619 kcal/mol for cyclic peptides 0 and 5, respectively. Despite promising in vitro results, cyclic peptide 12 failed to inhibit tumor growth in vivo, underscoring the importance of dual immunotherapies targeting several immune checkpoints to achieve anti-tumor efficacy.


Assuntos
Desenho de Fármacos , Imunoterapia , Proteína do Gene 3 de Ativação de Linfócitos , Peptídeos Cíclicos , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/imunologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Relação Dose-Resposta a Droga , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Relação Estrutura-Atividade , Nitrilas/química , Nitrilas/metabolismo
13.
Bioorg Chem ; 152: 107744, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213799

RESUMO

Substrate access tunnel engineering is a useful strategy for enzyme modification. In this study, we improved the catalytic performance of Fe-type Nitrile hydratase (Fe-type NHase) from Pseudomonas fluorescens ZJUT001 (PfNHase) by mutating residue Q86 at the entrance of the substrate access tunnel. The catalytic activity of the mutant PfNHase-αQ86W towards benzonitrile, 2-cyanopyridine, 3-cyanopyridine, and 4-hydroxybenzonitrile was enhanced by 9.35-, 3.30-, 6.55-, and 2.71-fold, respectively, compared to that of the wild-type PfNHase (PfNHase-WT). In addition, the mutant PfNHase-αQ86W showed a catalytic efficiency (kcat/Km) towards benzonitrile 17.32-fold higher than the PfNHase-WT. Interestingly, the substrate preference of PfNHase-αQ86W shifted from aliphatic nitriles to aromatic nitrile substrates. Our analysis delved into the structural changes that led to this altered substrate preference, highlighting an expanded entrance tunnel region, theenlarged substrate-binding pocket, and the increased hydrophobic interactions between the substrate and enzyme. Molecular dynamic simulations and dynamic cross-correlation Matrix (DCCM) further supported these findings, providing a comprehensive explanation for the enhanced catalytic activity towards aromatic nitrile substrates.


Assuntos
Hidroliases , Nitrilas , Pseudomonas fluorescens , Pseudomonas fluorescens/enzimologia , Hidroliases/metabolismo , Hidroliases/química , Especificidade por Substrato , Nitrilas/química , Nitrilas/metabolismo , Estrutura Molecular , Biocatálise , Engenharia de Proteínas
14.
Nature ; 558(7711): 620-623, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925951

RESUMO

G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of Gs to four different GPCRs have been elucidated1-4, but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT1B receptor (5-HT1BR) bound to the agonist donitriptan and coupled to an engineered Go heterotrimer. In this complex, 5-HT1BR is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the ß2-adrenoceptor (ß2AR) 3 or the adenosine A2A receptor (A2AR) 1 in complex with Gs. In contrast to the complexes with Gs, the gap between the receptor and the Gß-subunit in the Go-5-HT1BR complex precludes molecular contacts, and the interface between the Gα-subunit of Go and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the Go α-subunit. The molecular variations between the interfaces of Go and Gs in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/ultraestrutura , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Nitrilas/química , Nitrilas/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Conformação Proteica , Receptor 5-HT1B de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Triptaminas/química , Triptaminas/metabolismo
15.
Environ Res ; 258: 119480, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909948

RESUMO

In this study, g-C3N4/PANI was prepared by in situ oxidative polymerization. Graphite-phase carbon nitride (g-C3N4) with surface defects was deposited onto the surface of conductive polyaniline (PANI) to form a p-n heterojunction. This construction aimed to create an efficient heterogeneous catalyst, increasing the surface defect level and active sites of the composite, and augmenting its capability to capture and transfer extracellular electrons under anaerobic conditions. This addresses the challenge of low efficiency in direct interspecies electron transfer between bacteria and archaea during anaerobic digestion for methane production. The results showed that the prepared g-C3N4/PANI increased the CH4 yield and CH4 production rate by 82% and 96%, respectively. Notably, the conductivity and XPS test results showed that the ratio of g-C3N4 to PANI was 0.15, and the composite exhibited favorable conductivity, with a uniform distribution of pyrrolic nitrogen, pyridinic nitrogen, and graphitic nitrogen, each accounting for approximately 30%. Furthermore, g-C3N4/PANI effectively enhanced the metabolic efficiency of intermediate products such as acetate and butyrate. Analysis of the microbial community structure revealed that g-C3N4/PANI led to a significant increase in the abundance of hydrogenotrophic methanogen Methanolinea (from 48% to 64%) and enriched Clostridium (a rise of 1%) with direct interspecies electron transfer capability. Microbial community function analysis demonstrated that the addition of g-C3N4/PANI boosted the activities of key enzymes involved in anaerobic digestion, including phosphate transacetylase (PTA), phospho-butyryl transferase (PTB), and NAD-independent lactate dehydrogenase (NNLD), by 47%, 135%, and 153%, respectively. This acceleration in enzymatic activity promoted the metabolism of acetyl-CoA, butyryl-CoA, and pyruvate. Additionally, the function of ABC transporters was enhanced, thereby improving the efficiency of material and energy exchange among microorganisms.


Assuntos
Compostos de Anilina , Metano , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Anaerobiose , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Grafite/química , Nitrilas/metabolismo , Nitrilas/química
16.
Biosci Biotechnol Biochem ; 88(2): 138-146, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38017623

RESUMO

Aldoxime (R1R2C=NOH) and nitrile (R-C≡N) are nitrogen-containing compounds that are found in species representing all kingdoms of life. The enzymes discovered from the microbial "aldoxime-nitrile" pathway (aldoxime dehydratase, nitrile hydratase, amidase, and nitrilase) have been thoroughly studied because of their industrial importance. Although plants utilize cytochrome P450 monooxygenases to produce aldoxime and nitrile, many biosynthetic pathways are yet to be studied. Cyanogenic millipedes accumulate various nitrile compounds, such as mandelonitrile. However, no such aldoxime- and nitrile-metabolizing enzymes have been identified in millipedes. Here, I review the exploration of novel enzymes from plants and millipedes with characteristics distinct from those of microbial enzymes, the catalysis of industrially useful reactions, and applications of these enzymes for nitrile compound production.


Assuntos
Artrópodes , Animais , Artrópodes/metabolismo , Nitrilas/metabolismo , Hidroliases , Oximas , Catálise
17.
Luminescence ; 39(9): e4879, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223968

RESUMO

The binding mechanism of molecular interaction between bicalutamide and human serum albumin (HSA) in a pH 7.4 phosphate buffer was studied using various spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the fluorescence quenching of HSA by bicalutamide was a static quenching procedure. The binding constants and number of binding sites were evaluated at different temperatures. The thermodynamic parameters, ΔH and ΔS, were calculated to be 4.30 × 104 J·mol-1 and 245 J·mol-1·K-1, respectively, suggesting that the binding of bicalutamide to HSA was driven mainly by hydrophobic interactions and hydrogen bonds. The displacement studies indicated neither Sudlow's site I nor II but subdomain IB as the main binding site for bicalutamide on HSA. The binding distance between bicalutamide and HSA was determined to be 3.54 nm based on the Förster theory. Analysis of circular dichroism, synchronous, and 3D fluorescence spectra demonstrated that HSA conformation was slightly altered in the presence of bicalutamide.


Assuntos
Anilidas , Nitrilas , Albumina Sérica Humana , Espectrometria de Fluorescência , Termodinâmica , Compostos de Tosil , Compostos de Tosil/química , Anilidas/química , Anilidas/metabolismo , Nitrilas/química , Nitrilas/metabolismo , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Dicroísmo Circular , Sítios de Ligação , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas , Ligação de Hidrogênio
18.
Pestic Biochem Physiol ; 204: 106100, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277408

RESUMO

Synthetic pyrethroids are widely used insecticides which may cause chronic diseases in non-target organisms upon long-term exposure. Microbial degradation offers a reliable method to remove them from the environment. This study focused on Brevibacillus parabrevis BCP-09 and its enzymes for degrading pyrethroids. The predicted deltamethrin-degrading genes phnA and mhpC were used to construct recombinant plasmids. These plasmids, introduced into Escherichia coli BL21(DE3) cells and induced with L-arabinose. The results indicated that the intracellular crude enzyme efficiently degraded deltamethrin by 98.8 %, ß-cypermethrin by 94.84 %, and cyfluthrin by 73.52 % within 24 h. The hydrolytic enzyme MhpC possesses a catalytic triad Ser/His/Asp and a typical "Gly-X-Ser-X-Gly" conservative sequence of the esterase family. Co-cultivation of induced E. coli PhnA and E. coli MhpC resulted in degradation rates of 41.44 ± 3.55 % and 60.30 ± 4.55 %, respectively, for deltamethrin after 7 d. This study states that the degrading enzymes from B. parabrevis BCP-09 are an effective method for the degradation of pyrethroids, providing available enzyme resources for food safety and environmental protection.


Assuntos
Brevibacillus , Nitrilas , Piretrinas , Piretrinas/metabolismo , Brevibacillus/metabolismo , Brevibacillus/genética , Nitrilas/metabolismo , Inseticidas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/metabolismo , Hidrolases/genética , Biodegradação Ambiental , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Plasmídeos/genética
19.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125661

RESUMO

The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , NADPH-Ferri-Hemoproteína Redutase , Piretrinas , Anopheles/genética , Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Anopheles/metabolismo , Animais , Resistência a Inseticidas/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Oxirredução , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Especificidade por Substrato , Nitrilas/metabolismo , Nitrilas/farmacologia , Permetrina/farmacologia
20.
Angew Chem Int Ed Engl ; 63(39): e202410283, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38943496

RESUMO

The direct synthesis of alkenes from alkynes usually requires the use of transition-metal catalysts. Unfortunately, efficient biocatalytic alternatives for this transformation have yet to be discovered. Herein, the selective bioreduction of electron-deficient alkynes to alkenes catalysed by ene-reductases (EREDs) is described. Alkynes bearing ketone, aldehyde, ester, and nitrile moieties have been effectively reduced with excellent conversions and stereoselectivities, observing clear trends for the E/Z ratios depending on the nature of the electron-withdrawing group. In the case of cyanoalkynes, (Z)-alkenes were obtained as the major product, and the reaction scope was expanded to a wide variety of aromatic substrates (up to >99 % conversion, and Z/E stereoselectivities of up to >99/1). Other alkynes containing aldehyde, ketone, or ester functionalities also proved to be excellent substrates, and interestingly gave the corresponding (E)-alkenes. Preparative biotransformations were performed on a 0.4 mmol scale, producing the desired (Z)-cyanoalkenes with good to excellent isolated yields (63-97 %). This novel reactivity has been rationalised through molecular docking by predicting the binding poses of key molecules in the ERED-pu-0006 active site.


Assuntos
Alcenos , Alcinos , Alcinos/química , Alcenos/química , Alcenos/metabolismo , Nitrilas/química , Nitrilas/metabolismo , Estereoisomerismo , Oxirredução , Estrutura Molecular , Catálise , Oxirredutases/metabolismo , Oxirredutases/química , Biocatálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA