Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.258
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 43(9): 1627-1642, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697259

RESUMO

Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache. Female and male mice were subjected to 3 consecutive days of restraint stress or to dural stimulation with the proinflammatory cytokine interleukin-6. Following resolution of the initial poststimulus behavioral responses, animals were tested for hyperalgesic priming using a normally non-noxious dose of the NO donor sodium nitroprusside (SNP) or dural pH 7.0, respectively. We measured periorbital von Frey and grimace responses in both models and measured stress-induced changes in 3-nitrotyrosine (3-NT) expression (a marker for PN activity) and trigeminal ganglia (TGs) mitochondrial function. Additionally, we recorded the neuronal activity of TGs in response to the PN generator SIN-1 [5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride]. We then tested the effects of the PN decomposition catalysts Fe(III)5,10,15,20-tetrakis(N-methylpyridinium-4-yl) porphyrin (FeTMPyP) and FeTPPS [Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride], or the PN scavenger MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin] against these behavioral, molecular, and neuronal changes. Neutralizing PN attenuated stress-induced periorbital hypersensitivity and priming to SNP, with no effect on priming to dural pH 7.0. These compounds also prevented stress-induced increases in 3-NT expression in both the TGs and dura mater, and attenuated TG neuronal hyperexcitability caused by SIN-1. Surprisingly, FeTMPyP attenuated changes in TG mitochondrial function caused by SNP in stressed males only. Together, these data strongly implicate PN in migraine mechanisms and highlight the therapeutic potential of targeting PN.SIGNIFICANCE STATEMENT Among the most reliable experimental triggers of migraine are nitric oxide donors. The mechanisms by which nitric oxide triggers attacks are unclear but may be because of reactive nitroxidative species such as peroxynitrite. Using mouse models of migraine headache, we show that peroxynitrite-modulating compounds attenuate behavioral, neuronal, and molecular changes caused by repeated stress and nitric oxide donors (two of the most common triggers of migraine in humans). Additionally, our results show a sex-specific regulation of mitochondrial function by peroxynitrite following stress, providing novel insight into the ways in which peroxynitrite may contribute to migraine-related mechanisms. Critically, our data underscore the potential in targeting peroxynitrite formation as a novel therapeutic for the treatment of migraine headache.


Assuntos
Transtornos de Enxaqueca , Ácido Peroxinitroso , Ratos , Humanos , Camundongos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Doadores de Óxido Nítrico , Óxido Nítrico , Cloretos , Nitroprussiato
2.
Eur J Neurosci ; 59(7): 1604-1620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359910

RESUMO

Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.


Assuntos
Discinesias , Doença de Parkinson , Ratos , Animais , Levodopa/efeitos adversos , Nitroprussiato/farmacologia , Oxidopamina/toxicidade , Neurônios Espinhosos Médios , Óxido Nítrico/metabolismo , Discinesias/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Antiparkinsonianos/efeitos adversos
3.
BMC Plant Biol ; 24(1): 95, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331719

RESUMO

BACKGROUND: Spirodela polyrrhiza is a simple floating aquatic plant with great potential in synthetic biology. Sodium nitroprusside (SNP) stimulates plant development and increases the biomass and flavonoid content in some plants. However, the molecular mechanism of SNP action is still unclear. RESULTS: To determine the effect of SNP on growth and metabolic flux in S. polyrrhiza, the plants were treated with different concentrations of SNP. Our results showed an inhibition of growth, an increase in starch, soluble protein, and flavonoid contents, and enhanced antioxidant enzyme activity in plants after 0.025 mM SNP treatment. Differentially expressed transcripts were analysed in S. polyrrhiza after 0.025 mM SNP treatment. A total of 2776 differentially expressed genes (1425 upregulated and 1351 downregulated) were identified. The expression of some genes related to flavonoid biosynthesis and NO biosynthesis was upregulated, while the expression of some photosynthesis-related genes was downregulated. Moreover, SNP stress also significantly influenced the expression of transcription factors (TFs), such as ERF, BHLH, NAC, and WRKY TFs. CONCLUSIONS: Taken together, these findings provide novel insights into the mechanisms of underlying the SNP stress response in S. polyrrhiza and show that the metabolic flux of fixed CO2 is redirected into the starch synthesis and flavonoid biosynthesis pathways after SNP treatment.


Assuntos
Plantas , Transcriptoma , Nitroprussiato/farmacologia , Antioxidantes , Perfilação da Expressão Gênica , Flavonoides , Amido
4.
Exp Physiol ; 109(6): 841-846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460126

RESUMO

We sought to investigate possible impaired hyperaemia during dynamic handgrip exercise (HGE) in young healthy individuals who had recovered from COVID-19. We tested the vascular function in individuals recovered from COVID-19 using a nitric oxide donor (i.e., sodium nitroprusside; SNP), which could revert a possible impaired endothelial function during HGE. Further, we tested whether individuals who recovered from COVID-19 would present exaggerated brachial vascular resistance under an adrenergic agonist (i.e., phenylephrine; PHE) stimuli during HGE. Participants were distributed into two groups: healthy controls (Control; men: n = 6, 30 ± 3 years, 26 ± 1 kg/m2; and women: n = 5, 25 ± 1 years, 25 ± 1 kg/m2) and subjects recovered from COVID-19 (post-COVID; men: n = 6, 29 ± 3 years, 25 ± 1 kg/m2; and women: n = 10, 32 ± 4 years, 22 ± 1 kg/m2). Participants in the post-COVID group tested positive (RT-PCR) 12-14 weeks before the protocol. Heart rate (HR), brachial blood pressure (BP), brachial blood flow (BBF) and vascular conductance (BVC) at rest were not different between groups. The HGE increased HR (Control: Δ9 ± 0.4 bpm; and post-COVID: Δ11 ± 0.4 bpm) and BP (Control: Δ6 ± 1 mmHg; and post-COVID: Δ12 ± 0.6 mmHg) in both groups. Likewise, BBF (Control: Δ632 ± 38 ml/min; and post-COVID: Δ620 ± 27 ml/min) and BVC (Control: Δ6.6 ± 0.4 ml/min/mmHg; and post-COVID: Δ6.1 ± 0.3 ml/min/mmHg) increased during HGE. SNP did not change HGE-induced hyperaemia but did decrease BP, which induced a reflex-related increase in HR. PHE infusion also did not change the HGE-induced hyperaemia but raised BP and reduced HR. In conclusion, exercise-induced hyperaemia is preserved in healthy young subjects 12-14 weeks after recovery from COVID-19 infection.


Assuntos
COVID-19 , Exercício Físico , Força da Mão , Hiperemia , Humanos , COVID-19/fisiopatologia , Masculino , Feminino , Força da Mão/fisiologia , Hiperemia/fisiopatologia , Adulto , Exercício Físico/fisiologia , Resistência Vascular/fisiologia , Frequência Cardíaca/fisiologia , Nitroprussiato/farmacologia , Pressão Sanguínea/fisiologia , Fenilefrina/farmacologia , SARS-CoV-2 , Artéria Braquial/fisiopatologia , Voluntários Saudáveis
5.
Exp Physiol ; 109(5): 779-790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445814

RESUMO

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T , Endotélio Vascular , Nifedipino , Nitrofenóis , Humanos , Masculino , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/efeitos dos fármacos , Idoso , Bloqueadores dos Canais de Cálcio/farmacologia , Nifedipino/farmacologia , Projetos Piloto , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Di-Hidropiridinas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Compostos Organofosforados/farmacologia , Acetilcolina/farmacologia , Perna (Membro)/irrigação sanguínea , Nitroprussiato/farmacologia , Pessoa de Meia-Idade
6.
Vis Neurosci ; 41: E002, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725382

RESUMO

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Assuntos
Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Sciuridae , Tomografia de Coerência Óptica , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intravítreas , Oftalmoscopia , Nitroprussiato/farmacologia , Feminino , Masculino
7.
Brain ; 146(2): 448-454, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36299248

RESUMO

Migraine is thought to involve sensitization of the trigeminal nociceptive system. In preclinical pain models, activation of MNK-eIF4E signalling contributes to nociceptor sensitization and the development of persistent pain. Despite these observations, the role of MNK signalling in migraine remains unclear. Here, we investigate whether activation of MNK contributes to hypersensitivity in two rodent models of migraine. Female and male wild-type (WT) and MNK1 knock-out mice were subjected to repeated restraint stress or a dural injection of interleukin-6 (IL-6) and tested for periorbital hypersensitivity and grimacing. Upon returning to baseline thresholds, stressed mice were administered a low dose of the nitric oxide donor sodium nitroprusside and mice previously injected with IL-6 were given a second dural injection of pH 7.0 to test for hyperalgesic priming. MNK1 knock-out mice were significantly less hypersensitive than the WT following dural IL-6 and did not prime to pH 7.0 or sodium nitroprusside. Furthermore, treatment with the selective MNK inhibitor, eFT508, in WT mice prevented hypersensitivity caused by dural IL-6 or pH 7.0. Together, these results implicate MNK-eIF4E signalling in the development of pain originating from the dura and strongly suggest that targeting MNK inhibition may have significant therapeutic potential as a treatment for migraine.


Assuntos
Fator de Iniciação 4E em Eucariotos , Transtornos de Enxaqueca , Camundongos , Masculino , Feminino , Animais , Nitroprussiato , Interleucina-6 , Hiperalgesia/etiologia , Dor , Camundongos Knockout
8.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806834

RESUMO

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Assuntos
Secas , Peróxido de Hidrogênio , Óxido Nítrico , Nitroprussiato , Solanum lycopersicum , Nitroprussiato/farmacologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Nitrosação/efeitos dos fármacos , Clorofila/metabolismo
9.
J Nanobiotechnology ; 22(1): 199, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654266

RESUMO

Considering the high recrudescence and the long-lasting unhealed large-sized wound that affect the aesthetics and cause dysfunction after resection of maxillofacial malignant skin tumors, a groundbreaking strategy is urgently needed. Photothermal therapy (PTT), which has become a complementary treatment of tumors, however, is powerless in tissue defect regeneration. Therefore, a novel multifunctional sodium nitroprusside and Fe2+ ions loaded microneedles (SNP-Fe@MNs) platform was fabricated by accomplishing desirable NIR-responsive photothermal effect while burst releasing nitric oxide (NO) after the ultraviolet radiation for the ablation of melanoma. Moreover, the steady releasing of NO in the long term by the platform can exert its angiogenic effects via upregulating multiple related pathways to promote tissue regeneration. Thus, the therapeutic dilemma caused by postoperative maxillofacial skin malignancies could be conquered through promoting tumor cell apoptosis via synergistic PTT-gas therapy and subsequent regeneration process in one step. The bio-application of SNP-Fe@MNs could be further popularized based on its ideal bioactivity and appealing features as a strategy for synergistic therapy of other tumors occurred in skin.


Assuntos
Melanoma , Óxido Nítrico , Terapia Fototérmica , Neoplasias Cutâneas , Animais , Terapia Fototérmica/métodos , Camundongos , Neoplasias Cutâneas/terapia , Melanoma/terapia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Linhagem Celular Tumoral , Agulhas , Humanos , Nitroprussiato/farmacologia , Apoptose/efeitos dos fármacos , Pele , Ferro/química , Raios Ultravioleta
10.
Pediatr Crit Care Med ; 25(6): 538-546, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299930

RESUMO

OBJECTIVES: Postoperative hypertension frequently occurs after surgery for congenital heart disease. Given safety concerns when using calcium channel blockers in infants along with the cost and side-effect profile of nitroprusside, we retrospectively assessed our experience of using nicardipine and nitroprusside for postoperative blood pressure control in infants who underwent surgery for congenital heart disease. We also investigated the cost difference between the medications. DESIGN: This study was a single-center retrospective, pre-post chart review of patients who had surgery for congenital heart disease between 2016 and 2020. The primary aim was a noninferiority comparison of achievement of blood pressure goal at 1-hour post-initiation of an antihypertensive agent. Secondary comparisons included achievement of blood pressure goal at 2 hours after medication initiation, Vasoactive-Inotropic Score (VIS), and blood transfusion, crystalloid volume, and calcium needs. SETTING: Academic quaternary-care center. PATIENTS: Infants under 1 year old who required treatment for hypertension with nitroprusside ( n = 71) or nicardipine ( n = 52) within 24 hours of surgery for congenital heart disease. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We failed to identify any difference in proportion of patients that achieved blood pressure control at 1-hour after medication initiation (nitroprusside 52% vs. nicardipine 54%; p = 0.86), with nicardipine noninferior to nitroprusside within a 15% margin. Of patients who did not achieve control at 1-hour post-medication initiation, receiving nicardipine was associated with blood pressure control at 2 hours post-medication initiation (79% vs. 38%; p = 0.003). We also failed to identify an association between antihypertensive types and mean VIS scores, blood transfusion volumes, crystalloid volumes, and quantities of calcium administered. Index cost of using nitroprusside was 16 times higher than using nicardipine, primarily due to difference in wholesale cost. CONCLUSIONS: In our experience of achieving blood pressure control in infants after surgery for congenital heart disease (2016-2020), antihypertensive treatment with nicardipine was noninferior to nitroprusside. Furthermore, nicardipine use was significantly less expensive than nitroprusside. Our contemporary practice is therefore to use nicardipine in preference to nitroprusside.


Assuntos
Anti-Hipertensivos , Cardiopatias Congênitas , Hipertensão , Nicardipino , Nitroprussiato , Complicações Pós-Operatórias , Humanos , Nicardipino/uso terapêutico , Nicardipino/administração & dosagem , Nicardipino/economia , Estudos Retrospectivos , Nitroprussiato/uso terapêutico , Nitroprussiato/administração & dosagem , Nitroprussiato/economia , Lactente , Cardiopatias Congênitas/cirurgia , Feminino , Masculino , Recém-Nascido , Anti-Hipertensivos/economia , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/administração & dosagem , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/economia , Hipertensão/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Bloqueadores dos Canais de Cálcio/economia , Bloqueadores dos Canais de Cálcio/administração & dosagem , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Pressão Sanguínea/efeitos dos fármacos , Vasodilatadores/uso terapêutico , Vasodilatadores/administração & dosagem , Vasodilatadores/economia , Custos e Análise de Custo
11.
J Plant Res ; 137(3): 521-543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460108

RESUMO

The present study examined the regulatory mechanism of hydrogen sulfide (H2S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H2S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H2S scavenger (HT; 20 µM) and H2S inhibitor (PAG; 50 µM) reversed the positive responses of H2S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H2S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H2S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.


Assuntos
Sulfeto de Hidrogênio , Níquel , Óxido Nítrico , Nitrogênio , Oryza , Óxido Nítrico/metabolismo , Níquel/metabolismo , Sulfeto de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Nostoc muscorum/metabolismo , Polissacarídeos Bacterianos/metabolismo , Anabaena/metabolismo , Anabaena/efeitos dos fármacos , Anabaena/crescimento & desenvolvimento , Estresse Fisiológico , Nitroprussiato/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-37989399

RESUMO

Arterial pressure (Pa) regulation is essential to adequately distribute nutrients to metabolizing tissues, remove wastes and avoid lesions associated with hypertension. In vertebrates, short-term Pa regulation is achieved through the baroreflex, which elicits inversely proportional changes in heart rate (fH) and vascular resistance to restore Pa. The cardiac limb of this reflex has been reported in all vertebrate groups studied to date: teleosts, amphibians, snakes, lizards, crocodiles, birds and mammals - which led to the suggestion that the baroreflex is an ancient trait present in all vertebrate species. However, it is not clear whether more basal groups of vertebrates, such as cyclostomes, elasmobranchs and chondrosteans, manifest baroreflex regulation of fH. Thus, the aim of this study was to determine whether the white sturgeon (Acipenser transmontanus; Chondrostei: Acipenseridae) exhibits a cardiac baroreflex. To do so, we induced Pa perturbations through injections of phenylephrine, sodium nitroprusside (SNP) and saline solution (hypervolemia), and examined possible fH baroreflex responses. We also investigated whether fH responses triggered by fright and chemoreflex were present in this species, in order to confirm the potential of sturgeon to perform reflexive cardiac adjustments. The findings indicate that A. transmontanus exhibits reflex bradycardia in response to fright and chemoreceptor stimulation, illustrating its capacity for short-term cardiac regulation. However, this species does not display baroreflex control of fH across its physiological range. This dissociation suggests that while the nervous and cardiovascular systems of A. transmontanus are primed for rapid reflex responses, a cardiac baroreflex mechanism remains absent.


Assuntos
Barorreflexo , Sistema Cardiovascular , Animais , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Reflexo , Bradicardia , Fenilefrina/farmacologia , Frequência Cardíaca/fisiologia , Nitroprussiato/farmacologia , Mamíferos
13.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
14.
BMC Plant Biol ; 23(1): 302, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280509

RESUMO

Heat stress poses a threat to plants in arid and semiarid regions, leading to soil salinization and plant mortality. Researchers are exploring remedies to alleviate these effects, including using gibberellic acid (GA3) to regulate plant enzymes and antioxidants. Additionally, sodium nitroprusside (SNP) is gaining attention, but its combined effect with GA3 requires further research. To address this gap, we investigated the effects of GA3 and SNP on plants under heat stress conditions. For that, wheat plants were cultivated under 40 °C for 6 h per day (15 days). Sodium nitroprusside (donor of NO and SNP) and gibberellic acid (GA3), respectively, with 100 µM and 5 µg/ml concentrations, were applied as foliar sprays at 10 days after sowing (DAS). Results showed that SNP + GA3 treatment had the highest plant height (4.48% increase), plant fresh weight (29.7%), plant dry weight (87%), photosynthetic rate (39.76%) and stomatal conductance (38.10%), and Rubisco (54.2%) compared to the control. Our findings indicate a significant increase in NO, H2O2, TBARS, SOD, POD, APX, proline, GR, and GB that greatly scavenged reactive oxygen species (ROS) for decreasing the adverse effect of stress. Such findings confirmed the efficacy of the combined treatment of SNP + GA3 under high-temperature stress compared to the solitary application of GA3, SNP, and control. In conclusion, using SNP + GA3 is a better strategy for mitigating heat stress in wheat than individual applications. Further research is recommended to validate the effectiveness of SNP + GA3 in other cereal crops.


Assuntos
Peróxido de Hidrogênio , Triticum , Nitroprussiato/farmacologia , Triticum/fisiologia , Peróxido de Hidrogênio/farmacologia , Resposta ao Choque Térmico
15.
BMC Plant Biol ; 23(1): 166, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36977975

RESUMO

BACKGROUND: Glasswort (Salicornia persica) is identified as a halophyte plant, which is one of the most tolerant plants to salt conditions. The seed oil of the plant contains about 33% oil. In the present study, the effects of sodium nitroprusside (SNP; 0, 0.1, 0.2, and 0.4 mM) and potassium nitrate (KNO3; 0, 0.5, and 1%) were evaluated on several characteristics of glasswort under salinity stress (0, 10, 20, and 40 dS/m). RESULTS: morphological features, phenological traits, and yield parameters such as plant height, number of days to flowering, seed oil, biological yield, and seed yield significantly decreased in response to severe salt stress. However, the plants needed an optimal salinity concentration (20 dS/m NaCl) to obtain high amounts of seed oil and seed yield. The results also showed that a high level of salinity (40 dS/m NaCl) caused a decrease in plant oil and yield. In addition, by increasing the exogenous application of SNP and KNO3, the seed oil and seed yield increased. CONCLUSIONS: The application of SNP and KNO3 were effective in protecting S. persica plants from the deleterious effects of severe salt stress (40 dS/m NaCl), thereby restoring the activity of antioxidant enzymes, increasing the proline content, and maintaining cell membrane stability. It seems that both factors, i.e. SNP and KNO3, can be applied as mitigators of salt stress in plants.


Assuntos
Chenopodiaceae , Cloreto de Sódio , Nitroprussiato/farmacologia , Cloreto de Sódio/farmacologia , Estresse Salino , Óleos de Plantas , Salinidade
16.
Mol Pharm ; 20(1): 6-22, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36350781

RESUMO

For more than 70 years, sodium nitroprusside (SNP) has been used to treat severe hypertension in hospital emergency settings. During this time, a few other clinical uses have also emerged such as in the treatment of acute heart failure as well as improving mitral incompetence and in the intra- and perioperative management during heart surgery. This drug functions by releasing nitric oxide (NO), which modulates several biological processes with many potential therapeutic applications. However, this small molecule has a short lifetime, and it has been administered through the use of NO donor molecules such as SNP. On the other hand, SNP also has some setbacks such as the release of cyanide ions, high water solubility, and very fast NO release kinetics. Currently, there are many drug delivery strategies that can be applied to overcome many of these limitations, providing novel opportunities for the use of old drugs, including SNP. This Perspective describes some nitroprusside properties and highlights new potential therapeutic uses arising from the use of drug delivery systems, mainly silica-based nanoparticles. There is a series of great opportunities to further explore SNP in many medical issues as reviewed, which deserves a closer look by the scientific community.


Assuntos
Nanopartículas , Doadores de Óxido Nítrico , Nitroprussiato , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico , Sistemas de Liberação de Medicamentos
17.
Nitric Oxide ; 140-141: 30-40, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699453

RESUMO

Urine samples of female patients with overactive bladder (OAB) are characterized by low levels of nerve growth factor (NGF) and elevated concentrations of nitric oxide (NO) compared to healthy controls. We therefore examined how NO might regulate NGF synthesis using rat bladder smooth muscle (SMCs) and urothelial (UROs) cells in culture. In UROs, incubation in hyperglycemic conditions to mimic insulin insensitivity present in the OAB cohort increased secretion of NO and concomitantly decreased NGF, except when the NO synthase inhibitor, l-NAME (1 mM) was present. Sodium nitroprusside (SNP) (300 µM, 24 h), a NO generator, decreased NGF levels and decreased cyclic GMP (cGMP) content, a process validated by the cGMP synthase inhibitor ODQ (100 µM). Alternatively, SNP increased mRNA of both NGF and matrix metalloproteinase-9 (MMP-9). MMP-9 knockout of UROs by Crispr-Cas9 potently decreased the effect of SNP on NGF, implying a dependent role of NO on MMP-9. On the other hand, matrix metalloproteinase-7 (MMP-7) activity was increased by SNP, which taken together with increase in NGF mRNA, suggests a compensatory mechanism. In SMCs, hyperglycemic conditions had the same effect on extracellular content of NO and NGF than in UROs. SNP also decreased NGF secretion but increased cGMP content. Stable permeable analogs of cGMP 8-(4-Chlorophenylthio)-cGMP (1 mM) and N2,2'-O-Dibutyryl-cGMP (3 mM) inhibited NGF release. NGF and MMP-9 mRNA expression was unchanged by SNP. Deletion of MMP-9 in SMCs by Crispr-Cas9 did not alter the effect of SNP. Finally, SNP decreased MMP-7 activity, diminishing the conversion of proNGF to NGF. These results demonstrate that enhanced NO secretion triggered by high glucose decreases NGF secretion through pathways unique for each cell type that involve cGMP and proteases MMP-7 and MMP-9. These results might help to explain our observations from the urine from patients with OAB associated with metabolic syndrome.


Assuntos
Metaloproteinase 9 da Matriz , Óxido Nítrico , Ratos , Animais , Humanos , Feminino , Óxido Nítrico/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 7 da Matriz , Bexiga Urinária , Fator de Crescimento Neural/farmacologia , Nitroprussiato/farmacologia , Inibidores Enzimáticos , RNA Mensageiro , GMP Cíclico/metabolismo
18.
J Sex Med ; 20(1): 1-13, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897236

RESUMO

BACKGROUND: Sex steroids have been demonstrated as important modulators of vaginal function. The RhoA/ROCK calcium-sensitizing pathway plays a role in genital smooth muscle contractile mechanism, but its regulation has never been elucidated. AIM: This study investigated the sex steroid regulation of the vaginal smooth muscle RhoA/ROCK pathway using a validated animal model. METHODS: Ovariectomized (OVX) Sprague-Dawley rats were treated with 17ß-estradiol (E2), testosterone (T), and T with letrozole (T + L) and compared with intact animals. Contractility studies were performed to test the effect of the ROCK inhibitor Y-27632 and the nitric oxide (NO) synthase inhibitor L-NAME. In vaginal tissues, ROCK1 immunolocalization was investigated; mRNA expression was analyzed by semiquantitative reverse transcriptase-polymerase chain reaction; and RhoA membrane translocation was evaluated by Western blot. Finally, rat vaginal smooth muscle cells (rvSMCs) were isolated from the distal vagina of intact and OVX animals, and quantification of the RhoA inhibitory protein RhoGDI was performed after stimulation with NO donor sodium nitroprusside, with or without administration of the soluble guanylate cyclase inhibitor ODQ or PRKG1 inhibitor KT5823. OUTCOMES: Androgens are critical in inhibiting the RhoA/ROCK pathway of the smooth muscle compartment in the distal vagina. RESULTS: ROCK1 was immunolocalized in the smooth muscle bundles and blood vessel wall of the vagina, with weak positivity detected in the epithelium. Y-27632 induced a dose-dependent relaxation of noradrenaline precontracted vaginal strips, decreased by OVX and restored by E2, while T and T + L decreased it below the OVX level. In Western blot analysis, when compared with control, OVX significantly induced RhoA activation, as revealed by its membrane translocation, with T reverting it at a level significantly lower than in controls. This effect was not exerted by E2. Abolishing NO formation via L-NAME increased Y-27632 responsiveness in the OVX + T group; L-NAME had partial effects in controls while not modulating Y-27632 responsiveness in the OVX and OVX + E2 groups. Finally, stimulation of rvSMCs from control animals with sodium nitroprusside significantly increased RhoGDI protein expression, counteracted by ODQ and partially by KT5823 incubation; no effect was observed in rvSMCs from OVX rats. CLINICAL IMPLICATIONS: Androgens, by inhibiting the RhoA/ROCK pathway, could positively contribute to vaginal smooth muscle relaxation, favoring sexual intercourse. STRENGTHS AND LIMITATIONS: This study describes the role of androgens in maintaining vaginal well-being. The absence of a sham-operated animal group and the use of the only intact animal as control represented a limitation to the study.


Assuntos
Androgênios , Testosterona , Feminino , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Nitroprussiato , NG-Nitroarginina Metil Éster , Estradiol/farmacologia , Letrozol , Vagina/fisiologia , Inibidores Enzimáticos , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo , Ovariectomia , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Br J Clin Pharmacol ; 89(7): 2179-2189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36764326

RESUMO

AIMS: The aim of this study is to examine whether colchicine improves ß adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS: Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS: Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the ß adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION: Colchicine acutely enhances ß adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on ß adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT: Preclinical studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient ß adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.


Assuntos
Acetilcolina , Vasodilatação , Masculino , Pessoa de Meia-Idade , Humanos , Nitroprussiato/farmacologia , Isoproterenol/farmacologia , Acetilcolina/farmacologia , Colchicina/farmacologia , Hipertensão Essencial , Receptores Adrenérgicos
20.
Physiol Plant ; 175(4): e13985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616000

RESUMO

Nickel (Ni) stress adversely affects plant growth and biomass accumulation, posturing severe menace to crop production and food security. The current study aimed to determine the putative role of sodium nitroprusside (SNP) in mitigating Ni-induced phytotoxicity and identify the underlying defense mechanisms in maize, which are poorly understood. Our findings showed that SNP significantly augmented plant growth, biomass, and photosynthesis-related attributes (Fv/Fm, Fm, qP ETR, and ΦPSII) through diminishing Ni uptake and translocation in root and shoot tissues of maize under Ni stress conditions. In parallel, exogenous SNP substantially relieved maize seedlings from Ni-induced stress by enhancing enzymatic (SOD, CAT, and GPX) and non-enzymatic (phenol and flavonoids) antioxidant defenses and reducing oxidative stress indicators (MDA and H2 O2 ). The results revealed that SNP treatment increased the content of organic osmolyte glycine betaine and the activity of GST, concomitantly with ATP and ionic exchange capacity (including Ca2+ -ATPase and Mg2+ -ATPase), advocating its sufficiency to promote plant growth and avert Ni-induced stress in maize plants. The only exception was the production of organic acids (citric, oxalic, malic, and formic acids), which was reduced as SNP treatment relieved maize seedlings from Ni-induced oxidative damage. The application of SNP also displayed higher expression of defense- and detoxifying-related genes than in control treatments. Together, our data highlighted the mechanism involved in the amelioration of Ni toxicity by SNP; thus, suggesting a potential role of SNP in mitigating the adverse effects of Ni-contaminated soils to boost growth and yield of crop plants, that is, maize.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Nitroprussiato/farmacologia , Zea mays/metabolismo , Níquel/toxicidade , Plântula/metabolismo , Adenosina Trifosfatases/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA