RESUMO
Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.
Assuntos
Apoptose , DNA/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mitose , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Nucleossomos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Transdução de Sinais , Taxa de Sobrevida , Ativação Transcricional , Proteína bcl-X/metabolismoRESUMO
PARTNER is a prospective, phase II-III, randomized controlled clinical trial that recruited patients with triple-negative breast cancer1,2, who were germline BRCA1 and BRCA2 wild type3. Here we report the results of the trial. Patients (n = 559) were randomized on a 1:1 basis to receive neoadjuvant carboplatin-paclitaxel with or without 150 mg olaparib twice daily, on days 3 to 14, of each of four cycles (gap schedule olaparib, research arm) followed by three cycles of anthracycline-based chemotherapy before surgery. The primary end point was pathologic complete response (pCR)4, and secondary end points included event-free survival (EFS) and overall survival (OS)5. pCR was achieved in 51% of patients in the research arm and 52% in the control arm (P = 0.753). Estimated EFS at 36 months in the research and control arms was 80% and 79% (log-rank P > 0.9), respectively; OS was 90% and 87.2% (log-rank P = 0.8), respectively. In patients with pCR, estimated EFS at 36 months was 90%, and in those with non-pCR it was 70% (log-rank P < 0.001), and OS was 96% and 83% (log-rank P < 0.001), respectively. Neoadjuvant olaparib did not improve pCR rates, EFS or OS when added to carboplatin-paclitaxel and anthracycline-based chemotherapy in patients with triple-negative breast cancer who were germline BRCA1 and BRCA2 wild type. ClinicalTrials.gov ID: NCT03150576 .
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Terapia Neoadjuvante , Ftalazinas , Piperazinas , Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Antraciclinas/uso terapêutico , Antraciclinas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Genes BRCA1 , Genes BRCA2 , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Resposta Patológica Completa , Ftalazinas/administração & dosagem , Ftalazinas/uso terapêutico , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Intervalo Livre de Progressão , Estudos Prospectivos , Análise de Sobrevida , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/cirurgia , Adolescente , Adulto JovemRESUMO
The carbon skeleton of any organic molecule serves as the foundation for its three-dimensional structure, playing a pivotal role in determining its physical and biological properties1. As such, taxane diterpenes are one of the most well-known natural product families, primarily owing to the success of their most prominent compound, paclitaxel, an effective anticancer therapeutic for more than 25 years2-6. In contrast to classical taxanes, the bioactivity of cyclotaxanes (also referred to as complex taxanes) remains significantly underexplored. The carbon skeletons of these two groups of taxanes differ significantly, and so would typically their own distinct synthetic approaches. Here we report a versatile synthetic strategy based on the interconversion of complex molecular frameworks, providing general access to the wider taxane diterpene family. A range of classical and cyclotaxane frameworks was prepared including, among others, the total syntheses of taxinine K (2), canataxapropellane (5) and dipropellane C from a single advanced intermediate. The synthetic approach deliberately eschews biomimicry, emphasizing instead the power of stereoelectronic control in orchestrating the interconversion of polycyclic frameworks.
Assuntos
Hidrocarbonetos Aromáticos com Pontes , Técnicas de Química Sintética , Diterpenos , Taxoides , Produtos Biológicos/síntese química , Produtos Biológicos/química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/química , Carbono/química , Diterpenos/síntese química , Diterpenos/química , Estereoisomerismo , Taxoides/química , Taxoides/síntese química , Paclitaxel/químicaAssuntos
Autobiografias como Assunto , Paclitaxel/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Feminino , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêuticoRESUMO
Dynamic instability, the stochastic switching between growth and shrinkage, is essential for microtubule function. This behavior is driven by GTP hydrolysis in the microtubule lattice and is inhibited by anticancer agents like Taxol. We provide insight into the mechanism of dynamic instability, based on high-resolution cryo-EM structures (4.7-5.6 Å) of dynamic microtubules and microtubules stabilized by GMPCPP or Taxol. We infer that hydrolysis leads to a compaction around the E-site nucleotide at longitudinal interfaces, as well as movement of the α-tubulin intermediate domain and H7 helix. Displacement of the C-terminal helices in both α- and ß-tubulin subunits suggests an effect on interactions with binding partners that contact this region. Taxol inhibits most of these conformational changes, allosterically inducing a GMPCPP-like state. Lateral interactions are similar in all conditions we examined, suggesting that microtubule lattice stability is primarily modulated at longitudinal interfaces.
Assuntos
Guanosina Trifosfato/metabolismo , Microtúbulos/química , Tubulina (Proteína)/química , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Guanosina Trifosfato/análogos & derivados , Humanos , Hidrólise , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Paclitaxel/metabolismo , Conformação Proteica , Tubulina (Proteína)/metabolismoRESUMO
Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.
Assuntos
Neoplasias do Endométrio , Transição Epitelial-Mesenquimal , Netrina-1 , Animais , Feminino , Humanos , Camundongos , Biópsia , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Netrina-1/antagonistas & inibidores , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/efeitos dos fármacosRESUMO
Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.
Assuntos
Neoplasias da Mama/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/farmacologia , Técnicas Biossensoriais , Neoplasias da Mama/tratamento farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Paclitaxel/farmacologia , Receptores de Estrogênio/genética , Rotenona/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Receptor ERRalfa Relacionado ao EstrogênioRESUMO
Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-RasG12C. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-RasG12C with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in cis, pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Paclitaxel , Alelos , Combinação de MedicamentosRESUMO
Metal-catalysed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcohols remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcohols would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcohols must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of commercially available, structurally diverse alcohols as coupling partners4. We report herein a metallaphotoredox-based cross-coupling platform in which free alcohols are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcohols as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technology represents a general strategy for the merger of in situ alcohol activation with transition metal catalysis.
Assuntos
Álcoois/química , Brometos/química , Carbono/química , Cloretos/química , Metais/química , Oxigênio/química , Fotoquímica , Catálise , Metano/análogos & derivados , Metano/química , Nitrogênio/química , Oxirredução , Paclitaxel/química , Sinvastatina/síntese química , Sinvastatina/químicaRESUMO
Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.
Assuntos
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animais , Nanomedicina Teranóstica/métodos , Humanos , Camundongos , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Camundongos Nus , Meios de Contraste/químicaRESUMO
The microtubule network is formed from polymerised tubulin subunits and associating proteins, which govern microtubule dynamics and a diverse array of functions. To identify novel microtubule-binding proteins, we have developed an unbiased biochemical assay, which relies on the selective extraction of cytosolic proteins from U2OS cells, while leaving behind the microtubule network. Candidate proteins are linked to microtubules by their sensitivities to the depolymerising drug nocodazole or the microtubule-stabilising drug taxol, which is quantitated by mass spectrometry. Our approach is benchmarked by co-segregation of tubulin and previously established microtubule-binding proteins. We then identify several novel candidate microtubule-binding proteins, from which we have selected the ubiquitin E3 ligase tripartite motif-containing protein 3 (TRIM3) for further characterisation. We map TRIM3 microtubule binding to its C-terminal NHL-repeat region. We show that TRIM3 is required for the accumulation of acetylated tubulin, following treatment with taxol. Furthermore, loss of TRIM3 partially recapitulates the reduction in nocodazole-resistant microtubules characteristic of α-tubulin acetyltransferase 1 (ATAT1) depletion. These results can be explained by a decrease in ATAT1 following depletion of TRIM3 that is independent of transcription.
Assuntos
Proteômica , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Nocodazol/farmacologia , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas/metabolismo , Proteínas de Transporte/metabolismoRESUMO
BACKGROUND: Standard first-line chemotherapy for endometrial cancer is paclitaxel plus carboplatin. The benefit of adding pembrolizumab to chemotherapy remains unclear. METHODS: In this double-blind, placebo-controlled, randomized, phase 3 trial, we assigned 816 patients with measurable disease (stage III or IVA) or stage IVB or recurrent endometrial cancer in a 1:1 ratio to receive pembrolizumab or placebo along with combination therapy with paclitaxel plus carboplatin. The administration of pembrolizumab or placebo was planned in 6 cycles every 3 weeks, followed by up to 14 maintenance cycles every 6 weeks. The patients were stratified into two cohorts according to whether they had mismatch repair-deficient (dMMR) or mismatch repair-proficient (pMMR) disease. Previous adjuvant chemotherapy was permitted if the treatment-free interval was at least 12 months. The primary outcome was progression-free survival in the two cohorts. Interim analyses were scheduled to be triggered after the occurrence of at least 84 events of death or progression in the dMMR cohort and at least 196 events in the pMMR cohort. RESULTS: In the 12-month analysis, Kaplan-Meier estimates of progression-free survival in the dMMR cohort were 74% in the pembrolizumab group and 38% in the placebo group (hazard ratio for progression or death, 0.30; 95% confidence interval [CI], 0.19 to 0.48; P<0.001), a 70% difference in relative risk. In the pMMR cohort, median progression-free survival was 13.1 months with pembrolizumab and 8.7 months with placebo (hazard ratio, 0.54; 95% CI, 0.41 to 0.71; P<0.001). Adverse events were as expected for pembrolizumab and combination chemotherapy. CONCLUSIONS: In patients with advanced or recurrent endometrial cancer, the addition of pembrolizumab to standard chemotherapy resulted in significantly longer progression-free survival than with chemotherapy alone. (Funded by the National Cancer Institute and others; NRG-GY018 ClinicalTrials.gov number, NCT03914612.).
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias do Endométrio , Feminino , Humanos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/efeitos adversos , Reparo de Erro de Pareamento de DNA , Método Duplo-Cego , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversosRESUMO
BACKGROUND: Dostarlimab is an immune-checkpoint inhibitor that targets the programmed cell death 1 receptor. The combination of chemotherapy and immunotherapy may have synergistic effects in the treatment of endometrial cancer. METHODS: We conducted a phase 3, global, double-blind, randomized, placebo-controlled trial. Eligible patients with primary advanced stage III or IV or first recurrent endometrial cancer were randomly assigned in a 1:1 ratio to receive either dostarlimab (500 mg) or placebo, plus carboplatin (area under the concentration-time curve, 5 mg per milliliter per minute) and paclitaxel (175 mg per square meter of body-surface area), every 3 weeks (six cycles), followed by dostarlimab (1000 mg) or placebo every 6 weeks for up to 3 years. The primary end points were progression-free survival as assessed by the investigator according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, and overall survival. Safety was also assessed. RESULTS: Of the 494 patients who underwent randomization, 118 (23.9%) had mismatch repair-deficient (dMMR), microsatellite instability-high (MSI-H) tumors. In the dMMR-MSI-H population, estimated progression-free survival at 24 months was 61.4% (95% confidence interval [CI], 46.3 to 73.4) in the dostarlimab group and 15.7% (95% CI, 7.2 to 27.0) in the placebo group (hazard ratio for progression or death, 0.28; 95% CI, 0.16 to 0.50; P<0.001). In the overall population, progression-free survival at 24 months was 36.1% (95% CI, 29.3 to 42.9) in the dostarlimab group and 18.1% (95% CI, 13.0 to 23.9) in the placebo group (hazard ratio, 0.64; 95% CI, 0.51 to 0.80; P<0.001). Overall survival at 24 months was 71.3% (95% CI, 64.5 to 77.1) with dostarlimab and 56.0% (95% CI, 48.9 to 62.5) with placebo (hazard ratio for death, 0.64; 95% CI, 0.46 to 0.87). The most common adverse events that occurred or worsened during treatment were nausea (53.9% of the patients in the dostarlimab group and 45.9% of those in the placebo group), alopecia (53.5% and 50.0%), and fatigue (51.9% and 54.5%). Severe and serious adverse events were more frequent in the dostarlimab group than in the placebo group. CONCLUSIONS: Dostarlimab plus carboplatin-paclitaxel significantly increased progression-free survival among patients with primary advanced or recurrent endometrial cancer, with a substantial benefit in the dMMR-MSI-H population. (Funded by GSK; RUBY ClinicalTrials.gov number, NCT03981796.).
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias do Endométrio , Recidiva Local de Neoplasia , Feminino , Humanos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/efeitos adversos , Reparo de Erro de Pareamento de DNA , Método Duplo-Cego , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Instabilidade de Microssatélites , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/etiologia , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversosRESUMO
Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.
Assuntos
Quimiocina CCL2 , Gânglios Espinais , Neuralgia , Neurônios , Neurotrofina 3 , Paclitaxel , Receptor trkC , Animais , Feminino , Masculino , Camundongos , Antineoplásicos/efeitos adversos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Receptor trkC/metabolismo , Receptor trkC/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismoRESUMO
Chemotherapy-induced peripheral neuropathy (CIPN) is a persistent and irreversible side effect of antineoplastic agents. Patients with CIPN usually show chronic pain and sensory deficits with glove-and-stocking distribution. However, whether spinal neuronal microRNA (miR)-124 is involved in cisplatin-induced peripheral neuropathy remains to be studied. In this study, miR-124 was significantly reduced in the spinal dorsal horn in CIPN mice. Overexpression of neuronal miR-124 induced by injecting adeno-associated virus with neuron-specific promoter into the spinal cord of mice prevented the development of mechanical allodynia, sensory deficits, and the loss of intraepidermal nerve fibers induced by cisplatin. Meanwhile, cisplatin-induced M1 microglia activation and the release of proinflammatory cytokines were significantly inhibited by overexpression of neuronal miR-124. Furthermore, electroacupuncture (EA) treatment upregulated miR-124 expression in the spinal dorsal horn of CIPN mice. Interestingly, downregulation of spinal neuronal miR-124 significantly inhibited the regulatory effect of EA on CIPN and microglia activity as well as spinal neuroinflammation induced by cisplatin. These results demonstrate that spinal neuronal miR-124 is involved in the prevention and treatment of EA on cisplatin-induced peripheral neuropathy in mice. Our findings suggest that spinal neuronal miR-124 might be a potential target for EA effect, and we provide, to our knowledge, a new experimental basis for EA prevention of CIPN.
Assuntos
Antineoplásicos , Eletroacupuntura , MicroRNAs , Doenças do Sistema Nervoso Periférico , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Microglia , Paclitaxel/efeitos adversos , Antineoplásicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/prevenção & controle , Neurônios/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Paclitaxel , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Macrófagos Associados a Tumor/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Hidrogéis/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológicoRESUMO
During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.
Assuntos
Actomiosina , Proteínas de Caenorhabditis elegans , Animais , Actomiosina/genética , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Corpos Polares , Citocinese/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Meiose/genética , Oócitos/metabolismo , Paclitaxel , Proteínas Associadas aos Microtúbulos/genéticaRESUMO
We recently demonstrated that transient attenuation of Toll-like receptor 4 (TLR4) in dorsal root ganglion (DRG) neurons, can both prevent and reverse pain associated with chemotherapy-induced peripheral neuropathy (CIPN), a severe side effect of cancer chemotherapy, for which treatment options are limited. Given the reduced efficacy of opioid analgesics to treat neuropathic, compared with inflammatory pain, the cross talk between nociceptor TLR4 and mu-opioid receptors (MORs), and that MOR and TLR4 agonists induce hyperalgesic priming (priming), which also occurs in CIPN, we determined, using male rats, whether (1) antisense knockdown of nociceptor MOR attenuates CIPN, (2) and attenuates the priming associated with CIPN, and (3) CIPN also produces opioid-induced hyperalgesia (OIH). We found that intrathecal MOR antisense prevents and reverses hyperalgesia induced by oxaliplatin and paclitaxel, two common clinical chemotherapy agents. Oxaliplatin-induced priming was also markedly attenuated by MOR antisense. Additionally, intradermal morphine, at a dose that does not affect nociceptive threshold in controls, exacerbates mechanical hyperalgesia (OIH) in rats with CIPN, suggesting the presence of OIH. This OIH associated with CIPN is inhibited by interventions that reverse Type II priming [the combination of an inhibitor of Src and mitogen-activated protein kinase (MAPK)], an MOR antagonist, as well as a TLR4 antagonist. Our findings support a role of nociceptor MOR in oxaliplatin-induced pain and priming. We propose that priming and OIH are central to the symptom burden in CIPN, contributing to its chronicity and the limited efficacy of opioid analgesics to treat neuropathic pain.
Assuntos
Antineoplásicos , Hiperalgesia , Doenças do Sistema Nervoso Periférico , Receptores Opioides mu , Animais , Masculino , Ratos , Analgésicos Opioides/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Compostos Organoplatínicos/efeitos adversos , Compostos Organoplatínicos/toxicidade , Oxaliplatina/toxicidade , Oxaliplatina/efeitos adversos , Paclitaxel/toxicidade , Paclitaxel/efeitos adversos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo signaling pathway activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers.
Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Camundongos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , FosforilaçãoRESUMO
BACKGROUND: The long-term impact of drug-coated balloon (DCB) angioplasty for the treatment of patients with de novo coronary artery lesions remains uncertain. We aimed to assess the non-inferiority of DCB angioplasty with rescue stenting to intended drug-eluting stent (DES) deployment for patients with de novo, non-complex coronary artery lesions. METHODS: REC-CAGEFREE I was an open-label, randomised, non-inferiority trial conducted at 43 sites in China. After successful lesion pre-dilatation, patients aged 18 years or older with de novo, non-complex coronary artery disease (irrespective of target vessel diameter) and an indication for percutaneous coronary intervention were randomly assigned (1:1), via a web-based centralised system with block randomisation (block size of two, four, or six) and stratified by site, to paclitaxel-coated balloon angioplasty with the option of rescue stenting due to an unsatisfactory result (DCB group) or intended deployment of second-generation thin-strut sirolimus-eluting stents (DES group). The primary outcome was the device-oriented composite endpoint (DoCE; including cardiovascular death, target vessel myocardial infarction, and clinically and physiologically indicated target lesion revascularisation) assessed at 24 months in the intention-to-treat (ITT) population (ie, all participants randomly assigned to treatment). Non-inferiority was established if the upper limit of the one-sided 95% CI for the absolute risk difference was smaller than 2·68%. Safety was assessed in the ITT population. This study is registered with ClinicalTrials.gov, NCT04561739. It is closed to accrual and extended follow-up is ongoing. FINDINGS: Between Feb 5, 2021, and May 1, 2022, 2272 patients were randomly assigned to the DCB group (1133 [50%]) or the DES group (1139 [50%]). Median age at the time of randomisation was 62 years (IQR 54-69), 1574 (69·3%) of 2272 were male, 698 (30·7%) were female, and all patients were of Chinese ethnicity. 106 (9·4%) of 1133 patients in the DCB group received rescue DES after unsatisfactory DCB angioplasty. As of data cutoff (May 1, 2024), median follow-up was 734 days (IQR 731-739). At 24 months, the DoCE occurred in 72 (6·4%) of 1133 patients in the DCB group and 38 (3·4%) of 1139 in the DES group, with a risk difference of 3·04% in the cumulative event rate (upper boundary of the one-sided 95% CI 4·52; pnon-inferiority=0·65; two-sided 95% CI 1·27-4·81; p=0·0008); the criterion for non-inferiority was not met. During intervention, no acute vessel closures occurred in the DCB group and one (0·1%) of 1139 patients in the DES group had acute vessel closure. Periprocedural myocardial infarction occurred in ten (0·9%) of 1133 patients in the DCB group and nine (0·8%) in the DES group. INTERPRETATION: In patients with de novo, non-complex coronary artery disease, irrespective of vessel diameter, a strategy of DCB angioplasty with rescue stenting did not achieve non-inferiority compared with the intended DES implantation in terms of the DoCE at 2 years, which indicates that DES should remain the preferred treatment for this patient population. FUNDING: Xijing Hospital and Shenqi Medical. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.