Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.465
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Extremophiles ; 28(2): 25, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664270

RESUMO

We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.


Assuntos
Clima Desértico , Ambientes Extremos , Oxirredução , Percloratos , Percloratos/metabolismo , Metagenoma , Microbiota
2.
Extremophiles ; 28(3): 34, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044042

RESUMO

The extremophile bacterium Deinococcus radiodurans is characterized by its ability to survive and sustain its activity at high levels of radiation and is considered an organism that might survive in extraterrestrial environments. In the present work, we studied the combined effects of temperature and chlorine-containing salts, with focus on perchlorate salts which have been detected at high concentrations in Martian regolith, on D. radiodurans activity (CO2 production rates) and viability after incubation in liquid cultures for up to 30 days. Reduced CO2 production capacity and viability was observed at high perchlorate concentrations (up to 10% w/v) during incubation at 0 or 25 °C. Both the metabolic activity and viability were reduced as the perchlorate and chloride salt concentration increased and temperature decreased, and an interactive effect of temperature and salt concentration on the metabolic activity was found. These results indicate the ability of D. radiodurans to remain metabolically active and survive in low temperature environments rich in perchlorate.


Assuntos
Deinococcus , Percloratos , Percloratos/metabolismo , Deinococcus/metabolismo , Dióxido de Carbono/metabolismo , Temperatura , Cloretos/metabolismo , Viabilidade Microbiana
3.
Environ Sci Technol ; 58(24): 10644-10651, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832916

RESUMO

Microbial reduction of perchlorate (ClO4-) is emerging as a cost-effective strategy for groundwater remediation. However, the effectiveness of perchlorate reduction can be suppressed by the common co-contamination of nitrate (NO3-). We propose a means to overcome the limitation of ClO4- reduction: depositing palladium nanoparticles (Pd0NPs) within the matrix of a hydrogenotrophic biofilm. Two H2-based membrane biofilm reactors (MBfRs) were operated in parallel in long-term continuous and batch modes: one system had only a biofilm (bio-MBfR), while the other incorporated biogenic Pd0NPs in the biofilm matrix (bioPd-MBfR). For long-term co-reduction, bioPd-MBfR had a distinct advantage of oxyanion reduction fluxes, and it particularly alleviated the competitive advantage of NO3- reduction over ClO4- reduction. Batch tests also demonstrated that bioPd-MBfR gave more rapid reduction rates for ClO4- and ClO3- compared to those of bio-MBfR. Both biofilm communities were dominated by bacteria known to be perchlorate and nitrate reducers. Functional-gene abundances reflecting the intracellular electron flow from H2 to NADH to the reductases were supplanted by extracellular electron flow with the addition of Pd0NPs.


Assuntos
Biofilmes , Nitratos , Paládio , Percloratos , Paládio/química , Nitratos/metabolismo , Percloratos/metabolismo , Oxirredução , Elétrons , Água Subterrânea/química
4.
J Phycol ; 60(1): 185-194, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38156502

RESUMO

The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.


Assuntos
Cianobactérias , Percloratos , Humanos , Percloratos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Estresse Oxidativo
5.
Appl Microbiol Biotechnol ; 108(1): 266, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498184

RESUMO

Lipoxygenases (LOXs) catalyze dioxygenation of polyunsaturated fatty acids (PUFAs) into fatty acid hydroperoxides (FAHPs), which can be further transformed into a number of value-added compounds. LOXs have garnered interest as biocatalysts for various industrial applications. Therefore, a high-throughput LOX activity assay is essential to evaluate their performance under different conditions. This study aimed to enhance the suitability of the ferrous-oxidized xylenol orange (FOX) assay for screening LOX activity across a wide pH range with different PUFAs. The narrow linear detection range of the standard FOX assay restricts its utility in screening LOX activity. To address this, the concentration of perchloric acid in the xylenol orange reagent was adjusted. The modified assay exhibited a fivefold expansion in the linear detection range for hydroperoxides and accommodated samples with pH values ranging from 3 to 10. The assay could quantify various hydroperoxide species, indicating its applicability in assessing LOX substrate preferences. Due to sensitivity to pH, buffer types, and hydroperoxide species, the assay required calibration using the respective standard compound diluted in the same buffer as the measured sample. The use of correction factors is suggested when financial constraints limit the use of FAHP standard compounds in routine LOX substrate preference analysis. FAHP quantification by the modified FOX assay aligned well with results obtained using the commonly used conjugated diene method, while offering a quicker and broader sample pH range assessment. Thus, the modified FOX assay can be used as a reliable high-throughput screening method for determining LOX activity. KEY POINTS: • Modifying perchloric acid level in FOX reagent expands its linear detection range • The modified FOX assay is applicable for screening LOX activity in a wide pH range • The modified FOX assay effectively assesses substrate specificity of LOX.


Assuntos
Peróxido de Hidrogênio , Percloratos , Fenóis , Sulfóxidos , Ensaios de Triagem em Larga Escala , Xilenos/química , Lipoxigenases
6.
Appl Microbiol Biotechnol ; 108(1): 22, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159121

RESUMO

Three new strains of dissimilatory perchlorate-reducing bacteria (DPRB), QD19-16, QD1-5, and P3-1, were isolated from an active sludge. Phylogenetic trees based on 16S rRNA genes indicated that QD19-16, QD1-5, and P3-1 belonged to Brucella, Acidovorax, and Citrobacter, respectively, expanding the distribution of DPRB in the Proteobacteria. The three strains were gram-negative and facultative anaerobes with rod-shaped cells without flagella, which were 1.0-1.6 µm long and 0.5-0.6 µm wide. The three DPRB strains utilized similar broad spectrum of electron donors and acceptors and demonstrated a similar capability to reduce perchlorate within 6 days. The enzyme activity of perchlorate reductase in QD19-16 toward chlorate was higher than that toward perchlorate. The high sequence similarity of the perchlorate reductase operon and chlorite dismutase genes in the perchlorate reduction genomic islands (PRI) of the three strains implied that they were monophyletic origin from a common ancestral PRI. Two transposase genes (tnp1 and tnp2) were found in the PRIs of strain QD19-16 and QD1-5, but were absent in the strain P3-1 PRI. The presence of fragments of IR sequences in the P3-1 PRI suggested that P3-1 PRI had previously contained these two tnp genes. Therefore, it is plausible to suggest that a common ancestral PRI transferred across the strains Brucella sp. QD19-16, Acidovorax sp. QD1-5, and Citrobacter sp. P3-1 through horizontal gene transfer, facilitated by transposases. These results provided a direct evidence of horizontal gene transfer of PRI that could jump across phylogenetically unrelated bacteria through transposase. KEY POINTS: • Three new DPRB strains can effectively remove high concentration of perchlorate. • The PRIs of three DPRB strains are acquired from a single ancestral PRI. • PRIs are incorporated into different bacteria genome through HGT by transposase.


Assuntos
Ilhas Genômicas , Percloratos , Filogenia , Oxirredução , Transferência Genética Horizontal , RNA Ribossômico 16S/genética , Bactérias/genética , Oxirredutases/genética , Ecossistema , Transposases/genética
7.
J Appl Toxicol ; 44(8): 1184-1197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38639310

RESUMO

A modified amphibian metamorphosis assay was performed in which Nieuwkoop and Faber (NF) stage 47 Xenopus laevis larvae were exposed to different concentrations of either perchlorate (ClO4 -) or nitrate (NO3 -) for 32 days. Larvae were exposed to 0.0 (control), 5, 25, 125, 625, and 3125 µg/L ClO4 -, or 0 (control), 23, 71, 217, 660, and 2000 mg/L NO3 -. The primary endpoints were survival, hind limb length (HLL), forelimb emergence and development, developmental stage (including time to NF stage 62 [MT62]), thyroid histopathology, wet weight, and snout-vent length (SVL). Developmental delay as evidenced by altered stage distribution and increased MT62, a higher degree of thyroid follicular cell hypertrophy, and an increase in the prevalence of follicular cell hyperplasia was observed at concentrations ≥125 µg/L ClO4 -. The no observed effect concentration (NOEC) for developmental endpoints was 25.0 µg/L ClO4 - and the NOEC for growth endpoints was 3125 µg/L ClO4 -. Exposure to nitrate did not adversely affect MT62, but a decreasing trend in stage distribution and median developmental stage at ≥217 mg/L NO3 - was observed. No histopathologic effects associated with nitrate exposure were observed. An increasing trend in SVL-normalized HLL was observed at 2000 mg/L NO3 -. Nitrate did not alter larval growth. The NOEC for developmental endpoints was 71 mg/L NO3 -, and 2000 mg/L NO3 - for growth endpoints. The present study provided additional evidence that the effects and potency of nitrate and perchlorate on metamorphosis and growth in X. laevis are considerably different.


Assuntos
Larva , Metamorfose Biológica , Nitratos , Percloratos , Glândula Tireoide , Xenopus laevis , Animais , Percloratos/toxicidade , Metamorfose Biológica/efeitos dos fármacos , Nitratos/toxicidade , Xenopus laevis/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/crescimento & desenvolvimento , Glândula Tireoide/patologia , Relação Dose-Resposta a Droga , Poluentes Químicos da Água/toxicidade
8.
Biodegradation ; 35(5): 601-620, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625437

RESUMO

Three extremophile bacterial strains (BBCOL-009, BBCOL-014 and BBCOL-015), capable of degrading high concentrations of perchlorate at a range of pH (6.5 to 10.0), were isolated from Colombian Caribbean Coast sediments. Morphological features included Gram negative strain bacilli with sizes averaged of 1.75 × 0.95, 2.32 × 0.65 and 3.08 × 0.70 µm, respectively. The reported strains tolerate a wide range of pH (6.5 to 10.0); concentrations of NaCl (3.5 to 7.5% w/v) and KClO4- (250 to 10000 mg/L), reduction of KClO4- from 10 to 25%. LB broth with NaCl (3.5-30% w/v) and KClO4- (250-10000 mg/L) were used in independent trials to evaluate susceptibility to salinity and perchlorate, respectively. Isolates increased their biomass at 7.5 % (w/v) NaCl with optimal development at 3.5 % NaCl. Subsequently, ClO4- reduction was assessed using LB medium with 3.5% NaCl and 10000 mg/L ClO4-. BBCOL-009, BBCOL-014 and BBCOL-015 achieved 10%, 17%, and 25% reduction of ClO4-, respectively. The 16 S rRNA gene sequence grouped them as Bacillus flexus T6186-2, Bacillus marisflavi TF-11 (T), and Bacillus vietnamensis 15 - 1 (T) respectively, with < 97.5% homology. In addition, antimicrobial resistance to ertapenem, vancomycine, amoxicillin clavulanate, penicillin, and erythromycin was present in all the isolates, indicating their high adaptability to stressful environments. The isolated strains from marine sediments in Cartagena Bay, Colombia are suitable candidates to reduce perchlorate contamination in different environments. Although the primary focus of the study of perchlorate-reducing and resistant bacteria is in the ecological and agricultural realms, from an astrobiological perspective, perchlorate-resistant bacteria serve as models for astrobiological investigations.


Assuntos
Bacillus , Sedimentos Geológicos , Percloratos , Filogenia , Bacillus/metabolismo , Bacillus/isolamento & purificação , Colômbia , Sedimentos Geológicos/microbiologia , Percloratos/metabolismo , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Baías/microbiologia , Extremófilos , Antibacterianos/farmacologia , Salinidade , Oxirredução , Concentração de Íons de Hidrogênio
9.
Ophthalmic Plast Reconstr Surg ; 40(2): 198-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427834

RESUMO

PURPOSE: To investigate the ocular safety profile of topical perchlorate as a potential preventive treatment for nasolacrimal obstruction associated with excessive use of radioactive iodine therapy. METHODS: Nine Wistar male rats (18 eyes) were randomly assigned to receive an ocular application (topical eye drop on the OD, 3 times a day for 5 days) consisting of either: 1) sterile saline solution, 2) 30 mg/ml NaClO4 or 3) 30 mg/ml KClO4. The rat eyes were examined daily for corneal cloudiness/clarity, discharge, mucous secretions, conjunctival injection, eyelid erythema, and/or changes in behavior. Seven days after the first dose, the rats were euthanized and OU were harvested, fixed, embedded in paraffin, and stained with H&E and Masson's trichrome using standard techniques. RESULTS: The data collected over the 7 days revealed no behavior changes or ocular complications in any of the 3 study groups. Pathologic analysis of the corneas revealed normal findings on all groups without signs of inflammation, fibrosis, or any other abnormality, and no difference between the treated and control eyes. CONCLUSIONS: The findings of this study suggest that the use of topical perchlorate is safe to use on eyes in high concentrations. The efficacy of this compound in minimizing fibrosis of the nasolacrimal sac and duct warrants further study.


Assuntos
Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Masculino , Ratos , Animais , Ratos Wistar , Percloratos/toxicidade , Córnea , Fibrose
10.
Wei Sheng Yan Jiu ; 53(1): 102-108, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38443180

RESUMO

OBJECTIVE: To establish a method for determination of perchlorate and chlorate in drinks by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) based on isotopic internal standard method. METHODS: The perchlorate and chlorate residue in liquid drinks were extracted with methanol, in solid drinks with acetic acid solution, then centrifuged. The supernatant was cleaned-up with PSA/C18 cleanup tube. The separation of perchlorate and chlorate was carried out on a Acquity CSH fluorophenyl column(100 mm×2.1mm, 1.7 µm) and the detection was performed with tandem mass spectrometry with internal standard method for quantification. RESULTS: The peak area ratio of perchlorate and chlorate had a good linear relationship with their mass concentration within their respective linear ranges, with correlation coefficients(r) greater than 0.999. The limits of detection of perchlorate and chlorate were 0.2and 1 µg/L respectively and the limits of quantification were 0.5 and 3 µg/L respectively. The mean recoveries of two compounds were from 84.0% to 105.5% with relative standard deviations from 4.2% to 17.0% and 82.7% to 112.1% with relative standard deviations from 5.5% to 18.4%(n=6), respectively. The perchlorates in 11 kinds of beverage samples were 0.53-4.12 µg/L, chlorates were 3.27-61.86 µg/L. CONCLUSION: This method is simple, sensitive, accurate and reliable, which is suitable for the determination of perchlorate and chlorate in drinks.


Assuntos
Cloratos , Percloratos , Cromatografia Líquida , Espectrometria de Massas em Tandem
11.
Toxicol Appl Pharmacol ; 479: 116733, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866708

RESUMO

Despite the number of in vitro assays that have been recently developed to identify chemicals that interfere with the hypothalamic-pituitary-thyroid axis (HPT), the translation of those in vitro results into in vivo responses (in vitro to in vivo extrapolation, IVIVE) has received limited attention from the modeling community. To help advance this field a steady state biologically based dose response (BBDR) model for the HPT axis was constructed for the pregnant rat on gestation day (GD) 20. The BBDR HPT axis model predicts plasma levels of thyroid stimulating hormone (TSH) and the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormones are important for normal growth and development of the fetus. Perchlorate, a potent inhibitor of thyroidal uptake of iodide by the sodium iodide symporter (NIS) protein, was used as a case study for the BBDR HPT axis model. The inhibitory blocking of the NIS by perchlorate was associated with dose-dependent steady state decreases in thyroid hormone production in the thyroid gland. The BBDR HPT axis model predictions for TSH, T3, and T4 plasma concentrations in pregnant Sprague Dawley (SD) rats were within 2-fold of observations for drinking water perchlorate exposures ranging from 10 to 30,000 µg/kg/d. In Long Evans (LE) pregnant rats, for both control and perchlorate drinking water exposures, ranging from 85 to 82,000 µg/kg/d, plasma thyroid hormone and TSH concentrations were predicted within 2 to 3.4- fold of observations. This BBDR HPT axis model provides a successful IVIVE template for thyroid hormone disruption in pregnant rats.


Assuntos
Água Potável , Percloratos , Gravidez , Feminino , Ratos , Animais , Percloratos/toxicidade , Ratos Sprague-Dawley , Ratos Long-Evans , Hormônios Tireóideos , Tiroxina/metabolismo , Tireotropina
12.
Environ Sci Technol ; 57(49): 20480-20493, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015815

RESUMO

Studies about the impacts of maternal exposure to perchlorate, thiocyanate, and nitrate on offspring neurodevelopment are scarce. Based on a birth cohort in China, 1,028 mothers provided urine samples at three trimesters for determination of the three target analytes, and their offspring neurodevelopment was evaluated at 2 years old. Associations of maternal exposure to the three chemicals with offspring neurodevelopment were estimated using three statistical methods. Trimester-specific analyses using generalized estimating equation models showed that double increment of thiocyanate and nitrate during the first trimester was associated with 1.56 (95% CI: -2.82, -0.30) and 1.22 (-2.40, -0.03) point decreases in the offspring mental development index (MDI), respectively. Weighted quantile sum (WQS) regression analyses showed that the mixture exposure at the first and second trimesters was negatively associated with the offspring MDI (ß = -2.39, 95% CI: -3.85, -0.93; ß = -1.75, 95% CI: -3.04, -0.47, respectively) and thiocyanate contributed the most to the association (65.0 and 91.6%, respectively). Bayesian kernel machine regression analyses suggested an inverted U-shape relationship of maternal urinary thiocyanate with the offspring MDI. These findings suggested that prenatal exposure to the three chemicals (at current levels), especially thiocyanate and nitrate, may impair neurodevelopment. Early pregnancy seems to be the sensitive window.


Assuntos
Nitratos , Percloratos , Criança , Gravidez , Feminino , Humanos , Pré-Escolar , Nitratos/urina , Estudos de Coortes , Percloratos/urina , Tiocianatos/urina , Teorema de Bayes , Exposição Materna
13.
Environ Sci Technol ; 57(1): 666-673, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36445010

RESUMO

Ammunition wastewater contains toxic nitrated explosives like RDX and oxyanions like nitrate and perchlorate. Its treatment is challenged by low efficiency due to contaminant recalcitrance and high cost due to multiple processes needed for separately removing different contaminant types. This paper reports a H2-based low-energy strategy featuring the treatment of explosives via catalytic denitration followed by microbial mineralization coupled with oxyanion reduction. After a nitrate- and perchlorate-reducing biofilm incapable of RDX biodegradation was coated with palladium nanoparticles (Pd0NPs), RDX was rapidly denitrated with a specific catalytic activity of 8.7 gcat-1 min-1, while biological reductions of nitrate and perchlorate remained efficient. In the subsequent 30-day continuous test, >99% of RDX, nitrate, and perchlorate were coremoved, and their effluent concentrations were below their respective regulation levels. Detected intermediates and shallow metagenome analysis suggest that the intermediates after Pd-catalytic denitration of RDX ultimately were enzymatically utilized by the nitrate- and perchlorate-reducing bacteria as additional electron donor sources.


Assuntos
Substâncias Explosivas , Nanopartículas Metálicas , Poluentes Químicos da Água , Purificação da Água , Substâncias Explosivas/análise , Substâncias Explosivas/metabolismo , Percloratos/análise , Percloratos/metabolismo , Nitratos/análise , Nitratos/metabolismo , Poluentes Químicos da Água/análise , Paládio/análise , Reatores Biológicos/microbiologia
14.
J Fluoresc ; 33(1): 191-199, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333647

RESUMO

Endogenous sulfur dioxide (SO2), as a gas signal molecule, has a certain physiological functions. Understanding the role of endogenous SO2 in human physiology and pathology is of great significance to the biological characteristics of SO2,which bring challenges to develop fluorescent probes with excellent performance. Herein, we rationally designed and constructed a novel near-infrared bioprobe benzaldehyde-benzopyrylium (BBp) by employing the nucleophilic addition benzopyrylium perchlorate fluorophore and benzaldehyde moiety by means of C = C/C = O group that serves as both fluorescence reporting unit. Probe BBp exhibit excellent sensing performance with fluorescent "On - Off"rapid response (100 s) and long-wavelength emission (670 nm). With the treatment of HSO3-, the color of BBp solution obviously varies from purple to colorless, and the fluorescent color varies from red to colorless. By the fluorescence and colorimetric changes, probe BBp was capable of sensitive determination HSO3- with low limits of detection (LOD) of 0.43 µM, realizing visual quantitative monitoring SO2 derivative levels. Due to the low phototoxicity and good biocompatibility, it was successfully applied to monitor SO2 derivatives and fluorescence imaging in HepG2 and HeLa living cells. Hopefully, this work supplies a new strategy for designing NIR fluorescent probes for quantitative determination SO2 derivatives in biological samples.


Assuntos
Benzaldeídos , Corantes Fluorescentes , Humanos , Percloratos , Células HeLa , Mitocôndrias
15.
Macromol Rapid Commun ; 44(15): e2300129, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37232333

RESUMO

Smart materials that are energy efficient and take up less space are crucial in the development of new technologies. Electrochromic polymers (ECPs) are one such class of materials that actively change their optical behavior in both visible and infrared parts of the electromagnetic spectrum. They show promise in a wide range of applications, from active camouflage to smart displays/windows. The full capabilities of ECPs are still yet to be explored, for while their electrochromic properties are well established, their Infrared (IR) modulation is less reported on. This study addresses the potential of ECPs in active IR modulating devices by optimization of Vapor Phase Polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) thin films via the substitution of its dopant anion. Dynamic ranges denoting emissivity changes between reduced and oxidized states of PEDOT are found across dopants of tosylate, bromide, sulfate, chloride, perchlorate, and nitrate. Relative to the emissivity of reduced (neutral) PEDOT, a range of ±15% is achieved from the doped PEDOT films, and a maximum dynamic range of 0.11 across a 34% change is recorded for PEDOT doped with perchlorate.


Assuntos
Percloratos , Polímeros , Ânions
16.
Environ Res ; 233: 116442, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343755

RESUMO

Perchlorate has been described as an emerging pollutant that compromises water sources and human health. In this study, a new electrotrophic perchlorate reducing microorganism (EPRM) isolated from the Atacama Desert, Dechloromonas sp. CS-1, was evaluated for perchlorate removal in water in a bioelectrochemical reactor (BER) with a chemically modified electrode. BERs were operated for 17 days under batch mode conditions with an applied potential of -500 mV vs. Ag/AgCl. Surface analysis (i.e., SEM, XPS, FT-IR, RAMAN spectroscopy) on the modified electrode demonstrated heterogeneous transformation of the carbon fibers with the incorporation of nitrogen functional groups and the oxidation of the carbonaceous material. The BERs with the modified electrode and the presence of the EAM reached high cathodic efficiency (90.79 ± 9.157%) and removal rate (0.34 ± 0.007 mol m-3-day) compared with both control conditions. The observed catalytic enhancement of CS-1 was confirmed by a reduction in the charge transfer resistance obtained by electrochemical impedance spectroscopy (EIS). Finally, an electrochemical kinetic study revealed an eight-electron perchlorate bioreduction reaction at -638.33 ± 24.132 mV vs. Ag/AgCl. Therefore, our results show the synergistic effect of EPRM and chemically modified electrodes on perchlorate removal in a BER.


Assuntos
Nitrogênio , Percloratos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Nitrogênio/metabolismo , Eletrodos , Oxirredução
17.
Environ Res ; 238(Pt 2): 117185, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742753

RESUMO

A comparative degradation of antibiotic cefaclor (CEC) between Ti/Ti4O7 and Ti/RuO2 anodes, in terms of degradation kinetics, mineralization efficiency, and formation of toxic chlorate (ClO3-) and perchlorate (ClO4-), was performed with electrochemical-oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) processes. Besides, CEC degradation by EF with boron-doped diamond (BDD) anode was also tested. Results showed CEC decays always followed pseudo-first-order kinetics, with increasing apparent rate constants in the sequence of EO < EF < PEF. The mineralization efficiency of the processes with Ti/Ti4O7 anode was higher than that of Ti/RuO2 anode, but slightly lower than that of BDD anode. Under the optimal conditions, 94.8% mineralization was obtained in Ti/Ti4O7-PEF, which was much higher than 64.4% in Ti/RuO2-PEF. The use of Ti/RuO2 gave no generation of ClO3- or ClO4-, while the use of Ti/Ti4O7 yielded a small amount of ClO3- and trace amounts of ClO4-. Conversely, the use of BDD led to the highest generation of ClO3- and ClO4-. The reaction mechanism was studied systematically by detecting the generated H2O2 and •OH. The initial N of CEC was released as NH4+ and, in smaller proportion, as NO3-. Four short-chain carboxylic acids and nine aromatic intermediates were also detected, a possible reaction sequence for CEC mineralization was finally proposed.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Cefaclor , Peróxido de Hidrogênio , Cloratos , Titânio , Percloratos , Oxirredução , Eletrodos , Poluentes Químicos da Água/análise
18.
Environ Res ; 233: 116450, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343761

RESUMO

Perchlorate and chlorate are endocrine disruptors considered emerging contaminants (ECs). Both oxyanions are commonly associated with anthropogenic contamination from fertilizers, pesticides, explosives, and disinfection byproducts. However, the soils of the Atacama Desert are the most extensive natural reservoirs of perchlorate in the world, compromising drinking water sources in northern Chile. Field campaigns were carried (2014-2018) to assess the presence of these ECs in the water supply networks of twelve Chilean cities. Additionally, the occurrence of perchlorate, chlorate and other anions typically observed in drinking water matrices of the Atacama Desert (i.e., nitrate, chloride, sulfate) was evaluated using a Spearman correlation analysis to determine predictors for perchlorate and chlorate. High concentrations of perchlorate (up to 114.48 µg L-1) and chlorate (up to 9650 µg L-1) were found in three northern cities. Spatial heterogeneities were observed in the physicochemical properties and anion concentrations of the water supply network. Spearman correlation analysis indicated that nitrate, chloride, and sulfate were not useful predictors for the presence of perchlorate and chlorate in drinking water in Chile. Hence, this study highlights the need to establish systematic monitoring, regulation, and treatment for these EC of drinking water sources in northern Chilean cities for public health protection.


Assuntos
Água Potável , Poluentes Químicos da Água , Água Potável/química , Cloratos/análise , Chile , Nitratos/análise , Percloratos , Cidades , Cloretos/análise , Poluentes Químicos da Água/análise
19.
Biodegradation ; 34(4): 301-323, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36598629

RESUMO

This research investigates the biodegradation of perchlorate in the presence of the co-contaminants nitrate and chlorate using soluble and slow-release carbon sources. In addition, the impact of bio-augmentation and dilution, which results in lower total dissolved salts (TDS) and contaminant levels, is examined. Laboratory microcosms were conducted using actual groundwater and soils from a contaminated aquifer. The results revealed that both soluble and slow-release carbon sources support biodegradation of contaminants in the sequence nitrate > chlorate > perchlorate. Degradation rates, including and excluding lag times, revealed that the overall impact of the presence of co-contaminants depends on degradation kinetics and the relative concentrations of the contaminants. When the lag time caused by the presence of the co-contaminants is considered, the degradation rates for chlorate and perchlorate were two to three times slower. The results also show that dilution causes lower initial contaminant concentrations, and consequently, slower degradation rates, which is not desirable. On the other hand, the dilution resulting from the injection of amendments to support remediation promotes desirably lower salinity levels. However, the salinity associated with the presence of sulfate does not inhibit biodegradation. The naturally occurring bacteria were able to support the degradation of all contaminants. Bio-augmentation was effective only in diluted microcosms. Proteobacteria and Firmicutes were the dominant phyla identified in the microcosms.


Assuntos
Nitratos , Poluentes Químicos da Água , Nitratos/metabolismo , Percloratos/metabolismo , Cloratos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo
20.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615648

RESUMO

In order to broaden the study of energetic cations, a cation 3,5-diamino-4H-pyrazol-4-one oxime (DAPO) with good thermal stability was proposed, and its three salts were synthesized by a simple and efficient method. The structures of the three salts were verified by infrared spectroscopy, mass spectrometry, elemental analysis, and single crystal X-ray diffraction. The thermal stabilities of the three salts were verified by differential scanning calorimetry and thermos-gravimetric analysis. DAPO-based energetic salts are analysed using a variety of theoretical techniques, such as 2D fingerprint, Hirshfeld surface, and non-covalent interaction. Among them, the energy properties of perchlorate (DAPOP) and picrate (DAPOT) were determined by EXPLO5 program combined with the measured density and enthalpy of formation. These compounds have high density, acceptable detonation performance, good thermal stability, and satisfactory sensitivity. The intermolecular interactions of the four compounds were studied by Hirshfeld surface and non-covalent interactions, indicating that hydrogen bonds and π-π stacking interactions are the reasons for the extracellular properties of perchlorate (DAPOP) and picrate (DAPOT), indicating that DAPO is an optional nitrogen-rich cation for the design and synthesis of novel energetic materials with excellent properties.


Assuntos
Percloratos , Sais , Picratos , Oximas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA