RESUMO
l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.
Assuntos
Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese , Plantas/genética , Plantas/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Betalaínas/biossíntese , Caryophyllales/genética , Caryophyllales/metabolismo , Fabaceae , Complexos Multienzimáticos/classificação , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismoRESUMO
Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So-called MBW ternary complexes involving R2R3-MYB and basic helix-loop-helix (bHLH) transcription factors along with WD-repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis.
Assuntos
Arabidopsis/genética , Vias Biossintéticas , Flavonoides/metabolismo , Prefenato Desidrogenase/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Prefenato Desidrogenase/genética , Proteínas Repressoras/genéticaRESUMO
l-Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback-inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low-light conditions synchronized the tyra2 and wild-type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper-accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação para Baixo , Técnicas de Inativação de Genes , Homeostase , Oxirredutases/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Regulação para CimaRESUMO
Amino acid metabolic enzymes often contain a regulatory ACT domain, named for aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase). Arabidopsis encodes 12 putative amino acid sensor ACT repeat (ACR) proteins, all containing ACT repeats but no identifiable catalytic domain. Arabidopsis ACRs comprise three groups based on domain composition and sequence: group I and II ACRs contain four ACTs each, and group III ACRs contain two ACTs. Previously, all three groups had been documented only in Arabidopsis. Here, we extended this to algae and land plants, showing that all three groups of ACRs are present in most, if not all, land plants, whereas among algal ACRs, although quite diverse, only group III is conserved. The appearance of canonical group I and II ACRs thus accompanied the evolution of plants from living in water to living on land. Alignment of ACTs from plant ACRs revealed a conserved motif, DRPGLL, at the putative ligand-binding site. Notably, the unique features of the DRPGLL motifs in each ACT domain are conserved in ACRs from algae to land plants. The conservation of plant ACRs is reminiscent of that of human cellular arginine sensor for mTORC1 (CASTOR1), a member of a small protein family highly conserved in animals. CASTOR proteins also have four ACT domains, although the sequence identities between ACRs and CASTORs are very low. Thus, plant ACRs and animal CASTORs may have adapted the regulatory ACT domains from a more ancient metabolic enzyme, and then evolved independently.
Assuntos
Aminoácidos/metabolismo , Aspartato Quinase/classificação , Corismato Mutase/classificação , Evolução Molecular , Oryza/enzimologia , Proteínas de Plantas/classificação , Prefenato Desidrogenase/classificação , Motivos de Aminoácidos , Arabidopsis/enzimologia , Aspartato Quinase/química , Clorófitas/enzimologia , Corismato Mutase/química , Sequência Conservada , Filogenia , Proteínas de Plantas/química , Prefenato Desidrogenase/química , Domínios Proteicos , Rodófitas/enzimologiaRESUMO
BACKGROUND: Resveratrol is a plant secondary metabolite with diverse, potential health-promoting benefits. Due to its nutraceutical merit, bioproduction of resveratrol via microbial engineering has gained increasing attention and provides an alternative to unsustainable chemical synthesis and straight extraction from plants. However, many studies on microbial resveratrol production were implemented with the addition of water-insoluble phenylalanine or tyrosine-based precursors to the medium, limiting in the sustainable development of bioproduction. RESULTS: Here we present a novel coculture platform where two distinct metabolic background species were modularly engineered for the combined total and de novo biosynthesis of resveratrol. In this scenario, the upstream Escherichia coli module is capable of excreting p-coumaric acid into the surrounding culture media through constitutive overexpression of codon-optimized tyrosine ammonia lyase from Trichosporon cutaneum (TAL), feedback-inhibition-resistant 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase (aroGfbr) and chorismate mutase/prephenate dehydrogenase (tyrAfbr) in a transcriptional regulator tyrR knockout strain. Next, to enhance the precursor malonyl-CoA supply, an inactivation-resistant version of acetyl-CoA carboxylase (ACC1S659A,S1157A) was introduced into the downstream Saccharomyces cerevisiae module constitutively expressing codon-optimized 4-coumarate-CoA ligase from Arabidopsis thaliana (4CL) and resveratrol synthase from Vitis vinifera (STS), and thus further improve the conversion of p-coumaric acid-to-resveratrol. Upon optimization of the initial inoculation ratio of two populations, fermentation temperature, and culture time, this co-culture system yielded 28.5 mg/L resveratrol from glucose in flasks. In further optimization by increasing initial net cells density at a test tube scale, a final resveratrol titer of 36 mg/L was achieved. CONCLUSIONS: This is first study that demonstrates the use of a synthetic E. coli-S. cerevisiae consortium for de novo resveratrol biosynthesis, which highlights its potential for production of other p-coumaric-acid or resveratrol derived biochemicals.
Assuntos
Técnicas de Cocultura/métodos , Ácidos Cumáricos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Resveratrol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Aciltransferases/genética , Amônia-Liases/genética , Amônia-Liases/metabolismo , Arabidopsis/enzimologia , Basidiomycota/enzimologia , Corismato Mutase/genética , Corismato Mutase/metabolismo , Códon/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Escherichia coli/crescimento & desenvolvimento , Fermentação , Genes Fúngicos , Genes de Plantas , Engenharia Genética , Microbiologia Industrial , Malonil Coenzima A/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Tirosina/metabolismo , Vitis/enzimologiaRESUMO
L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that defines TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.
Assuntos
Evolução Molecular , Transdução de Sinais , Tirosina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Filogenia , Plantas , Prefenato Desidrogenase/química , Prefenato Desidrogenase/genética , Alinhamento de Sequência , Especificidade por SubstratoRESUMO
Diverse natural products are synthesized in plants by specialized metabolic enzymes, which are often lineage-specific and derived from gene duplication followed by functional divergence. However, little is known about the contribution of primary metabolism to the evolution of specialized metabolic pathways. Betalain pigments, uniquely found in the plant order Caryophyllales, are synthesized from the aromatic amino acid l-tyrosine (Tyr) and replaced the otherwise ubiquitous phenylalanine-derived anthocyanins. This study combined biochemical, molecular and phylogenetic analyses, and uncovered coordinated evolution of Tyr and betalain biosynthetic pathways in Caryophyllales. We found that Beta vulgaris, which produces high concentrations of betalains, synthesizes Tyr via plastidic arogenate dehydrogenases (TyrAa /ADH) encoded by two ADH genes (BvADHα and BvADHß). Unlike BvADHß and other plant ADHs that are strongly inhibited by Tyr, BvADHα exhibited relaxed sensitivity to Tyr. Also, Tyr-insensitive BvADHα orthologs arose during the evolution of betalain pigmentation in the core Caryophyllales and later experienced relaxed selection and gene loss in lineages that reverted from betalain to anthocyanin pigmentation, such as Caryophyllaceae. These results suggest that relaxation of Tyr pathway regulation increased Tyr production and contributed to the evolution of betalain pigmentation, highlighting the significance of upstream primary metabolic regulation for the diversification of specialized plant metabolism.
Assuntos
Betalaínas/biossíntese , Vias Biossintéticas/genética , Caryophyllales/genética , Evolução Molecular , Pigmentação/genética , Tirosina/metabolismo , Antocianinas/metabolismo , Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Plastídeos/enzimologia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Spinacia oleracea/enzimologia , Spinacia oleracea/genéticaRESUMO
Biosynthesis of l-tyrosine (l-Tyr) is directed by the interplay of two enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which is then converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD). This work reports the first characterization of the independently expressed PD domain of bifunctional CM-PD from the crenarchaeon Ignicoccus hospitalis and the first functional studies of both full-length CM-PD and the PD domain from the bacterium Haemophilus influenzae. All proteins were hexa-histidine tagged, expressed in Escherichia coli and purified. Expression and purification of I. hospitalis CM-PD generated a degradation product identified as a PD fragment lacking the protein's first 80 residues, Δ80CM-PD. A comparable stable PD domain could also be generated by limited tryptic digestion of this bifunctional enzyme. Thus, Δ80CM-PD constructs were prepared in both organisms. CM-PD and Δ80CM-PD from both organisms were dimeric and displayed the predicted enzymatic activities and thermal stabilities in accord with their hyperthermophilic and mesophilic origins. In contrast with H. influenzae PD activity which was NAD+-specific and displayed >75% inhibition with 50µM l-Tyr, I. hospitalis PD demonstrated dual cofactor specificity with a preference for NADP+ and an insensitivity to l-Tyr. These properties are consistent with a model of the I. hospitalis PD domain based on the previously reported structure of the H. influenzae homolog. Our results highlight the similarities and differences between the archaeal and bacterial TyrA proteins and reveal that the PD activity of both prokaryotes can be successfully mapped to a functionally independent unit.
Assuntos
Proteínas de Bactérias/metabolismo , Desulfurococcaceae/metabolismo , Haemophilus influenzae/metabolismo , Complexos Multienzimáticos/metabolismo , Prefenato Desidrogenase/metabolismo , Sequência de Aminoácidos , Corismato Mutase/metabolismo , Escherichia coli/metabolismo , Histidina/metabolismo , NAD/metabolismo , NADP/metabolismo , Tirosina/metabolismoRESUMO
During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling.
Assuntos
Proteínas de Arabidopsis/metabolismo , Cotilédone/metabolismo , Homeostase , Prefenato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Cromatografia Líquida , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Células do Mesofilo/metabolismo , Células do Mesofilo/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Fenilalanina/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Plantas Geneticamente Modificadas , Prefenato Desidrogenase/genética , Proteoma/genética , Proteoma/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massas em TandemRESUMO
L-Tyrosine (Tyr) and its plant-derived natural products are essential in both plants and humans. In plants, Tyr is generally assumed to be synthesized in the plastids via arogenate dehydrogenase (TyrA(a), also known also ADH), which is strictly inhibited by L-Tyr. Using phylogenetic and expression analyses, together with recombinant enzyme and endogenous activity assays, we identified prephenate dehydrogenases (TyrA(p)s, also known as PDHs) from two legumes, Glycine max (soybean) and Medicago truncatula. The identified PDHs were phylogenetically distinct from canonical plant ADH enzymes, preferred prephenate to arogenate substrate, localized outside of the plastids and were not inhibited by L-Tyr. The results provide molecular evidence for the diversification of primary metabolic Tyr pathway via an alternative cytosolic PDH pathway in plants.
Assuntos
Fabaceae/enzimologia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Tirosina/farmacologia , Arabidopsis/enzimologia , Genoma de Planta , Cinética , Medicago/enzimologia , Dados de Sequência Molecular , Filogenia , Prefenato Desidrogenase/efeitos dos fármacos , Glycine max/enzimologiaRESUMO
OBJECTIVE: To identify new enzymatic bottlenecks of L-tyrosine pathway for further improving the production of L-tyrosine and its derivatives. RESULT: When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l-1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l-1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain. CONCLUSION: Combinatorial metabolic engineering provides a new strategy for further improvement of L-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
Assuntos
Anti-Infecciosos/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Prefenato Desidrogenase/metabolismo , Propionatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Ácidos Cumáricos , Expressão Gênica , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Fósforo-Oxigênio Liases/genética , Prefenato Desidrogenase/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP(+) to NAD(+) as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe's combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity.
Assuntos
Proteínas Arqueais/metabolismo , Corismato Mutase/metabolismo , Desulfurococcaceae/enzimologia , Nanoarchaeota/enzimologia , Prefenato Desidratase/metabolismo , Prefenato Desidrogenase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas Arqueais/química , Proteínas Arqueais/genética , Corismato Mutase/química , Corismato Mutase/genética , Desulfurococcaceae/fisiologia , Estabilidade Enzimática , Temperatura Alta , Nanoarchaeota/fisiologia , Nitrosaminas/metabolismo , Prefenato Desidratase/química , Prefenato Desidratase/genética , Prefenato Desidrogenase/química , Prefenato Desidrogenase/genética , Especificidade por Substrato , SimbioseRESUMO
Capsaicinoids (CAP) are nitrogenous metabolites formed from valine (Val) and phenylalanine (Phe) in the placentas of hot Capsicum genotypes. Placentas of Habanero peppers can incorporate inorganic nitrogen into amino acids and have the ability to secure the availability of the required amino acids for CAP biosynthesis. In order to determine the participation of the placental tissue as a supplier of these amino acids, the effects of blocking the synthesis of Val and Phe by using specific enzyme inhibitors were analyzed. Isolated placentas maintained in vitro were used to rule out external sources' participation. Blocking Phe synthesis, through the inhibition of arogenate dehydratase, significantly decreased CAP accumulation suggesting that at least part of Phe required in this process has to be produced in situ. Chlorsulfuron inhibition of acetolactate synthase, involved in Val synthesis, decreased not only Val accumulation but also that of CAP, pointing out that the requirement for this amino acid can also be fulfilled by this tissue. The presented data demonstrates that CAP accumulation in in vitro maintained placentas can be accomplished through the in situ availability of Val and Phe and suggests that the synthesis of the fatty acid chain moiety may be a limiting factor in the biosynthesis of these alkaloids.
Assuntos
Capsaicina/metabolismo , Capsicum/metabolismo , Fenilalanina/metabolismo , Valina/metabolismo , Acetolactato Sintase/antagonistas & inibidores , Capsaicina/síntese química , Capsicum/química , Inibidores Enzimáticos/farmacologia , Genótipo , Nitrogênio/metabolismo , Prefenato Desidrogenase/antagonistas & inibidores , Sulfonamidas/farmacologia , Triazinas/farmacologiaRESUMO
BACKGROUND: 2-phenylethanl (2-PE) and its derivatives are important chemicals, which are widely used in food materials and fine chemical industries and polymers and it's also a potentially valuable alcohol for next-generation biofuel. However, the biosynthesis of 2-PE are mainly biotransformed from phenylalanine, the price of which barred the production. Therefore, it is necessary to seek more sustainable technologies for 2-PE production. RESULTS: A new strain which produces 2-PE through the phenylpyruvate pathway was isolated and identified as Enterobacter sp. CGMCC 5087. The strain is able to use renewable monosaccharide as the carbon source and NH4Cl as the nitrogen source to produce 2-PE. Two genes of rate-limiting enzymes, chorismate mutase p-prephenate dehydratase (PheA) and 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (DAHP), were cloned from Escherichia coli and overexpressed in E. sp. CGMCC 5087. The engineered E. sp. CGMCC 5087 produces 334.9 mg L⻹ 2-PE in 12 h, which is 3.26 times as high as the wild strain. CONCLUSIONS: The phenylpyruvate pathway and the substrate specificity of 2-keto-acid decarboxylase towards phenylpyruvate were found in E. sp. CGMCC 5087. Combined with the low-cost monosaccharide as the substrate, the finding provides a novel and potential way for 2-PE production.
Assuntos
Enterobacter/metabolismo , Álcool Feniletílico/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Cloreto de Amônio/metabolismo , Cromatografia Gasosa , Escherichia coli/enzimologia , Monossacarídeos/metabolismo , Álcool Feniletílico/análise , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Especificidade por SubstratoRESUMO
BACKGROUND: Streptococcus mutans is known to be a primary etiological factor of dental caries, a widespread and growing disease in Polish children. Recognition of novel features determining the pathogenicity of this pathogen may contribute to understanding the mechanisms of bacterial infections.The goal of the study was to determine the activity of prephenate dehydrogenase (PHD) and to illuminate the role of the enzyme in S. mutans pathogenicity. The strains were biotyped based on STREPTOtest 24 biochemical identification tests and the usefulness of biotyping in the determination of S. mutans pathogenicity determinants was examined. RESULTS: Out of ninety strains isolated from children with deciduous teeth fifty three were classified as S. mutans species. PDH activity was higher (21.69 U/mg on average) in the experimental group compared to the control group (5.74 U/mg on average) (P <0.001). Moreover, it was demonstrated that biotype I, established basing on the biochemical characterization of the strain, was predominant (58.5%) in oral cavity streptococcosis. Its dominance was determined by higher PDH activity compared to biotypes II and III (P = 0.0019). CONCLUSIONS: The usefulness of biotyping in the determination of Streptococcus mutans pathogenicity determinants was demonstrated. The obtained results allow for better differentiation of S. mutans species and thus may contribute to recognition of pathogenic bacteria transmission mechanisms and facilitate treatment.
Assuntos
Técnicas de Tipagem Bacteriana/métodos , Boca/microbiologia , Prefenato Desidrogenase/análise , Streptococcus mutans/classificação , Streptococcus mutans/enzimologia , Fatores de Virulência/análise , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Streptococcus mutans/isolamento & purificação , Streptococcus mutans/patogenicidadeRESUMO
A novel prephenate dehydrogenase gene designated pdhE-1 was cloned by sequence-based screening of a plasmid metagenomic library from uncultured alkaline-polluted microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis indicated that PdhE-1 and other putative prephenate dehydrogenases were closely related. The putative prephenate dehydrogenase gene was subcloned into pETBlue-2 vector and overexpressed in Escherichia coli BL21(DE3) pLacI. The recombinant protein was purified to homogeneity. The maximum activity of the PdhE-1 protein occurred at pH 8.0 and 45 °C using prephenic acid as the substrate. The prephenate dehydrogenase had an apparent K m value of 0.87 mM, a V max value of 41.5 U/mg, a k cat value of 604.8/min and a k cat/K m value of 1.16 × 10(4)/mol/s. L-Tyrosine did not obviously inhibit the recombinant PdhE-1 protein. The identification of a metagnome-derived prephenate dehydrogenase provides novel material for studies and application of proteins involved in tyrosine biosynthesis.
Assuntos
Metagenoma , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Microbiologia do Solo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Biblioteca Genômica , Cinética , Dados de Sequência Molecular , Filogenia , Prefenato Desidrogenase/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Tirosina/química , Tirosina/farmacologiaRESUMO
BACKGROUND: Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. RESULTS: The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3-4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d'Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. CONCLUSIONS: Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data represent the first step towards the functional characterisation of important genes for the determination of olive fruit quality.
Assuntos
Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Olea/metabolismo , Fenóis/metabolismo , Transcriptoma , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Genes de Plantas , Glucosídeos/genética , Glucosídeos/metabolismo , Glucosídeos Iridoides/metabolismo , Iridoides , Metabolômica/métodos , Olea/genética , Olea/crescimento & desenvolvimento , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Óleos de Plantas/análise , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Piranos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da EspécieRESUMO
L-3,4-dihydroxyphenylalanine (L-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of L-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of L-tyrosine (L-Tyr), an L-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on L-Tyr production of PTS inactivation (PTS(-) gluc(+) phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of L-Tyr production (q( L-Tyr)), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q( L-Tyr) in the PTS(+) and the PTS(-) gluc(+) strains, respectively. An 8.6-fold increase in L-Tyr yield from glucose was observed in the PTS(-) gluc(+) tyrR (-) strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for L-Tyr production caused the synthesis of L-DOPA. One of such strains, having the PTS(-) gluc(+) tyrR (-) phenotype, displayed the best production parameters in minimal medium, with a specific rate of L-DOPA production of 13.6 mg/g/h, L-DOPA yield from glucose of 51.7 mg/g and a final L-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of L-DOPA in 50 h.
Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Levodopa/biossíntese , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Corismato Mutase/genética , Corismato Mutase/metabolismo , Escherichia coli/genética , Engenharia Metabólica , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Plasmídeos , Prefenato Desidratase/genética , Prefenato Desidratase/metabolismo , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Transcetolase/genética , Transcetolase/metabolismo , Tirosina/biossíntese , Zymomonas/enzimologiaRESUMO
In plants, the amino acids tyrosine and phenylalanine are synthesized from arogenate by arogenate dehydrogenase and arogenate dehydratase, respectively, with the relative flux to each being tightly controlled. Here the characterization of a maize opaque endosperm mutant (mto140), which also shows retarded vegetative growth, is described The opaque phenotype co-segregates with a Mutator transposon insertion in an arogenate dehydrogenase gene (zmAroDH-1) and this led to the characterization of the four-member family of maize arogenate dehydrogenase genes (zmAroDH-1-zmAroDH-4) which share highly similar sequences. A Mutator insertion at an equivalent position in AroDH-3, the most closely related family member to AroDH-1, is also associated with opaque endosperm and stunted vegetative growth phenotypes. Overlapping but differential expression patterns as well as subtle mutant effects on the accumulation of tyrosine and phenylalanine in endosperm, embryo, and leaf tissues suggest that the functional redundancy of this gene family provides metabolic plasticity for the synthesis of these important amino acids. mto140/arodh-1 seeds shows a general reduction in zein storage protein accumulation and an elevated lysine phenotype typical of other opaque endosperm mutants, but it is distinct because it does not result from quantitative or qualitative defects in the accumulation of specific zeins but rather from a disruption in amino acid biosynthesis.
Assuntos
Regulação da Expressão Gênica de Plantas , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Sementes , Zea mays/enzimologia , Zea mays/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Endosperma/enzimologia , Endosperma/genética , Lisina/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fenilalanina/biossíntese , Fenilalanina/genética , Fenilalanina/metabolismo , Prefenato Desidrogenase/química , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Tirosina/metabolismo , Zea mays/classificação , Zea mays/metabolismo , Zeína/metabolismoRESUMO
Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P)(+)-dependent oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD(+) has been determined to 2.0â Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/ß dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α-ß motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP(+) and NAD(+). The loop between ß5 and ß6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from the loop between ß5 and ß6) and Arg365' (from the additional C-terminal helix of the adjacent monomer) is observed that might be involved in gating the active site.