Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59.012
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(17): 4713-4732.e19, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38968937

RESUMO

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.


Assuntos
Tolerância Imunológica , Progesterona , Progestinas , Inibidor 1 da Ativação de Células T com Domínio V-Set , Animais , Feminino , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Humanos , Camundongos , Gravidez , Progestinas/farmacologia , Progestinas/metabolismo , Progesterona/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placenta/imunologia
2.
Physiol Rev ; 104(3): 1121-1145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329421

RESUMO

Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17ß-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.


Assuntos
Parto , Parto/fisiologia , Humanos , Feminino , Gravidez , Animais , Progesterona/metabolismo , Progesterona/fisiologia , Ocitocina/metabolismo , Ocitocina/fisiologia , Útero/metabolismo , Útero/fisiologia , Prostaglandinas/metabolismo , Estradiol/metabolismo
3.
Immunity ; 54(7): 1478-1493.e6, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34015257

RESUMO

Viral infections during pregnancy are a considerable cause of adverse outcomes and birth defects, and the underlying mechanisms are poorly understood. Among those, cytomegalovirus (CMV) infection stands out as the most common intrauterine infection in humans, putatively causing early pregnancy loss. We employed murine CMV as a model to study the consequences of viral infection on pregnancy outcome and fertility maintenance. Even though pregnant mice successfully controlled CMV infection, we observed highly selective, strong infection of corpus luteum (CL) cells in their ovaries. High infection densities indicated complete failure of immune control in CL cells, resulting in progesterone insufficiency and pregnancy loss. An abundance of gap junctions, absence of vasculature, strong type I interferon (IFN) responses, and interaction of innate immune cells fully protected the ovarian follicles from viral infection. Our work provides fundamental insights into the effect of CMV infection on pregnancy loss and mechanisms protecting fertility.


Assuntos
Corpo Lúteo/imunologia , Infecções por Citomegalovirus/imunologia , Fertilidade/imunologia , Imunidade Inata/imunologia , Animais , Corpo Lúteo/virologia , Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Feminino , Junções Comunicantes/imunologia , Interferon Tipo I/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Gravidez , Progesterona/imunologia
4.
Cell ; 161(6): 1334-44, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046438

RESUMO

Females may display dramatically different behavior depending on their state of ovulation. This is thought to occur through sex-specific hormones acting on behavioral centers in the brain. Whether incoming sensory activity also differs across the ovulation cycle to alter behavior has not been investigated. Here, we show that female mouse vomeronasal sensory neurons (VSNs) are temporarily and specifically rendered "blind" to a subset of male-emitted pheromone ligands during diestrus yet fully detect and respond to the same ligands during estrus. VSN silencing occurs through the action of the female sex-steroid progesterone. Not all VSNs are targeted for silencing; those detecting cat ligands remain continuously active irrespective of the estrous state. We identify the signaling components that account for the capacity of progesterone to target specific subsets of male-pheromone responsive neurons for inactivation. These findings indicate that internal physiology can selectively and directly modulate sensory input to produce state-specific behavior. PAPERCLIP.


Assuntos
Ciclo Estral , Camundongos/fisiologia , Comportamento Sexual Animal , Olfato , Órgão Vomeronasal/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Feromônios/metabolismo , Progesterona/metabolismo , Proteínas/química , Caracteres Sexuais , Órgão Vomeronasal/citologia
5.
Nature ; 629(8014): 1082-1090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750354

RESUMO

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Assuntos
Glândulas Suprarrenais , Evolução Biológica , Comportamento Paterno , Peromyscus , Animais , Feminino , Masculino , 20-alfa-Di-Hidroprogesterona/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/enzimologia , Glândulas Suprarrenais/metabolismo , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Proteínas GADD45/genética , Variação Genética , Hibridização Genética , Peromyscus/classificação , Peromyscus/genética , Peromyscus/fisiologia , Progesterona/metabolismo , Locos de Características Quantitativas , Comportamento Social , Tenascina/genética
6.
Proc Natl Acad Sci U S A ; 121(25): e2400601121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861608

RESUMO

The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.


Assuntos
20-Hidroxiesteroide Desidrogenases , Decídua , Inflamação , Macaca mulatta , Parto , Progesterona , Células Estromais , Feminino , Animais , Progesterona/metabolismo , Progesterona/farmacologia , Decídua/metabolismo , Humanos , Camundongos , Células Estromais/metabolismo , Gravidez , Inflamação/metabolismo , 20-Hidroxiesteroide Desidrogenases/metabolismo , 20-Hidroxiesteroide Desidrogenases/genética , Interleucina-1beta/metabolismo , Córion/metabolismo
7.
PLoS Pathog ; 20(1): e1011956, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295116

RESUMO

Viral infection is a significant risk factor for fertility issues. Here, we demonstrated that infection by neurotropic alphaherpesviruses, such as pseudorabies virus (PRV), could impair female fertility by disrupting the hypothalamus-pituitary-ovary axis (HPOA), reducing progesterone (P4) levels, and consequently lowering pregnancy rates. Our study revealed that PRV exploited the transient receptor potential mucolipin 1 (TRPML1) and its lipid activator, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), to facilitate viral entry through lysosomal cholesterol and Ca2+. P4 antagonized this process by inducing lysosomal storage disorders and promoting the proteasomal degradation of TRPML1 via murine double minute 2 (MDM2)-mediated polyubiquitination. Overall, the study identifies a novel mechanism by which PRV hijacks the lysosomal pathway to evade P4-mediated antiviral defense and impair female fertility. This mechanism may be common among alphaherpesviruses and could contribute significantly to their impact on female reproductive health, providing new insights for the development of antiviral therapies.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Feminino , Camundongos , Animais , Herpesvirus Suídeo 1/fisiologia , Progesterona/farmacologia , Progesterona/metabolismo , Internalização do Vírus , Lisossomos/metabolismo , Antivirais/metabolismo , Pseudorraiva/metabolismo
8.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532128

RESUMO

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Assuntos
Resistência à Insulina , Gravidez , Feminino , Camundongos , Animais , Resistência à Insulina/genética , Frutose/efeitos adversos , Frutose/metabolismo , Progesterona/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Fígado/metabolismo , Lipídeos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(5): e2214684120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693099

RESUMO

Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Camundongos , Humanos , Animais , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Implantação do Embrião/genética , Útero/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo
10.
J Biol Chem ; 300(7): 107484, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897566

RESUMO

Progesterone (P4), acting via its nuclear receptor (PR), is critical for pregnancy maintenance by suppressing proinflammatory and contraction-associated protein (CAP)/contractile genes in the myometrium. P4/PR partially exerts these effects by tethering to NF-κB bound to their promot-ers, thereby decreasing NF-κB transcriptional activity. However, the underlying mechanisms whereby P4/PR interaction blocks proinflammatory and CAP gene expression are not fully understood. Herein, we characterized CCR-NOT transcription complex subunit 1 (CNOT1) as a corepressor that also interacts within the same chromatin complex as PR-B. In mouse myome-trium increased expression of CAP genes Oxtr and Cx43 at term coincided with a marked decline in expression and binding of CNOT1 to NF-κB-response elements within the Oxtr and Cx43 promoters. Increased CAP gene expression was accompanied by a pronounced decrease in enrichment of repressive histone marks and increase in enrichment of active histone marks to this genomic region. These changes in histone modification were associated with changes in expression of corresponding histone modifying enzymes. Myometrial tissues from P4-treated 18.5 dpc pregnant mice manifested increased Cnot1 expression at 18.5 dpc, compared to vehicle-treated controls. P4 treatment of PR-expressing hTERT-HM cells enhanced CNOT1 expression and its recruitment to PR bound NF-κB-response elements within the CX43 and OXTR promoters. Furthermore, knockdown of CNOT1 significantly increased expression of contractile genes. These novel findings suggest that decreased expression and DNA-binding of the P4/PR-regulated transcriptional corepressor CNOT1 near term and associated changes in histone modifications at the OXTR and CX43 promoters contribute to the induction of myometrial contractility leading to parturition.


Assuntos
Miométrio , Regiões Promotoras Genéticas , Receptores de Progesterona , Animais , Feminino , Humanos , Camundongos , Gravidez , Conexina 43/metabolismo , Conexina 43/genética , Regulação da Expressão Gênica , Miométrio/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Contração Uterina/metabolismo , Contração Uterina/genética
11.
Lancet ; 404(10449): 266-275, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38944045

RESUMO

BACKGROUND: Use of frozen embryo transfer (FET) in in-vitro fertilisation (IVF) has increased. However, the best endometrial preparation protocol for FET cycles is unclear. We compared natural and modified natural cycle strategies with an artificial cycle strategy for endometrial preparation before FET. METHODS: In this randomised, open-label study, we recruited ovulatory women aged 18-45 years at a hospital in Ho Chi Minh City, Viet Nam, who were randomly allocated (1:1:1) to natural, modified natural, or artificial cycle endometrial preparation using a computer-generated random list and block randomisation. The trial was not masked due to the nature of the study interventions. In natural cycles, no oestrogen, progesterone, or human chorionic gonadotropin (hCG) was used. In modified natural cycles, hCG was used to trigger ovulation. In artificial cycles, oral oestradiol valerate (8 mg/day from day 2-4 of menstruation) and vaginal progesterone (800 mg/day starting when endometrial thickness was ≥7 mm) were used. Embryos were vitrified, and then one or two day-3 embryos or one day-5 embryo were warmed and transferred under ultrasound guidance. If the first FET cycle was cancelled, subsequent cycles were performed with artificial endometrial preparation. The primary endpoint was livebirth after one FET. This trial is registered at ClinicalTrials.gov, NCT04804020. FINDINGS: Between March 22, 2021, and March 14, 2023, 4779 women were screened and 1428 were randomly assigned (476 to each group). 99 first FET cycles were cancelled in each of the natural and modified cycle groups, versus none in the artificial cycle group. The livebirth rate after one FET was 174 (37%) of 476 in the natural cycle strategy group, 159 (33%) of 476 in the modified natural cycle strategy group, and 162 (34%) of 476 in the artificial cycle strategy group (relative risk 1·07 [95% CI 0·87-1·33] for natural vs artificial cycle strategy, and 0·98 [0·79-1·22] for modified natural vs artificial cycle strategy). Maternal and neonatal outcomes did not differ significantly between groups, as the power to detect small differences was low. INTERPRETATION: Although the livebirth rate was similar after natural, modified natural, and artificial cycle endometrial preparation strategies in ovulatory women undergoing FET IVF, no definitive conclusions can be made regarding the comparative safety of the three approaches. FUNDING: None.


Assuntos
Criopreservação , Transferência Embrionária , Endométrio , Nascido Vivo , Progesterona , Humanos , Feminino , Adulto , Transferência Embrionária/métodos , Gravidez , Vietnã , Progesterona/administração & dosagem , Adulto Jovem , Estradiol/administração & dosagem , Ovulação/efeitos dos fármacos , Adolescente , Fertilização in vitro/métodos , Indução da Ovulação/métodos , Pessoa de Meia-Idade , Taxa de Gravidez , Gonadotropina Coriônica/administração & dosagem
12.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239412

RESUMO

The binding of 17ß-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.


Assuntos
Receptor alfa de Estrogênio , Trofoblastos , Animais , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Fertilidade , Humanos , Camundongos , Placenta/metabolismo , Gravidez , Progesterona/metabolismo , Receptores de Estrogênio/metabolismo , Trofoblastos/metabolismo
13.
PLoS Pathog ; 19(8): e1011566, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651449

RESUMO

As an obligate intracellular parasite, Toxoplasma gondii must import essential nutrients from the host cell into the parasitophorous vacuole. We previously reported that the parasite scavenges cholesterol from host endocytic organelles for incorporation into membranes and storage as cholesteryl esters in lipid droplets. In this study, we have investigated whether Toxoplasma utilizes cholesterol as a precursor for the synthesis of metabolites, such as steroids. In mammalian cells, steroidogenesis occurs in mitochondria and involves membrane-bound type I cytochrome P450 oxidases that are activated through interaction with heme-binding proteins containing a cytochrome b5 domain, such as members of the membrane-associated progesterone receptor (MAPR) family. Our LC-MS targeted lipidomics detect selective classes of hormone steroids in Toxoplasma, with a predominance for anti-inflammatory hydroxypregnenolone species, deoxycorticosterone and dehydroepiandrosterone. The genome of Toxoplasma contains homologs encoding a single type I CYP450 enzyme (we named TgCYP450mt) and a single MAPR (we named TgMAPR). We showed that TgMAPR is a hemoprotein with conserved residues in a heme-binding cytochrome b5 domain. Both TgCYP450 and TgMAPR localize to the mitochondrion and show interactions in in situ proximity ligation assays. Genetic ablation of cyp450mt is not tolerated by Toxoplasma; we therefore engineered a conditional knockout strain and showed that iΔTgCYP450mt parasites exhibit growth impairment in cultured cells. Parasite strains deficient for mapr could be generated; however, ΔTgMAPR parasites suffer from poor global fitness, loss of plasma membrane integrity, aberrant mitochondrial cristae, and an abnormally long S-phase in their cell cycle. Compared to wild-type parasites, iΔTgCYP450mt and ΔTgMAPR lost virulence in mice and metabolomics studies reveal that both mutants have reduced levels of steroids. These observations point to a steroidogenic pathway operational in the mitochondrion of a protozoan that involves an evolutionary conserved TgCYP450mt enzyme and its binding partner TgMAPR.


Assuntos
Toxoplasma , Animais , Camundongos , Toxoplasma/genética , Citocromos b5/genética , Mitocôndrias , Sistema Enzimático do Citocromo P-450 , Membranas Mitocondriais , Progesterona , Mamíferos
14.
Plant Physiol ; 194(2): 1006-1023, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37831417

RESUMO

Citronellol is a pleasant-smelling compound produced in rose (Rosa spp.) flowers and in the leaves of many aromatic plants, including pelargoniums (Pelargonium spp.). Although geraniol production has been well studied in several plants, citronellol biosynthesis has been documented only in crab-lipped spider orchid (Caladenia plicata) and its mechanism remains open to question in other species. We therefore profiled 10 pelargonium accessions using RNA sequencing and gas chromatography-MS analysis. Three enzymes from the progesterone 5ß-reductase and/or iridoid synthase-like enzymes (PRISE) family were characterized in vitroand subsequently identified as citral reductases (named PhCIRs). Transgenic RNAi lines supported a role for PhCIRs in the biosynthesis of citronellol as well as in the production of mint-scented terpenes. Despite their high amino acid sequence identity, the 3 enzymes showed contrasting stereoselectivity, either producing mainly (S)-citronellal or a racemate of both (R)- and (S)-citronellal. Using site-directed mutagenesis, we identified a single amino acid substitution as being primarily responsible for the enzyme's enantioselectivity. Phylogenetic analysis of pelargonium PRISEs revealed 3 clades and 7 groups of orthologs. PRISEs from different groups exhibited differential affinities toward substrates (citral and progesterone) and cofactors (NADH/NADPH), but most were able to reduce both substrates, prompting hypotheses regarding the evolutionary history of PhCIRs. Our results demonstrate that pelargoniums evolved citronellol biosynthesis independently through a 3-step pathway involving PRISE homologs and both citral and citronellal as intermediates. In addition, these enzymes control the enantiomeric ratio of citronellol thanks to small alterations of the catalytic site.


Assuntos
Monoterpenos Acíclicos , Aldeídos , Pelargonium , Pelargonium/química , Pelargonium/metabolismo , Progesterona , Filogenia , Oxirredutases/genética , Oxirredutases/metabolismo , Plantas/metabolismo
15.
FASEB J ; 38(11): e23710, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822676

RESUMO

Steroidogenic tissues contain cytosolic lipid droplets that are important for steroidogenesis. Perilipin 2 (PLIN2), a structural coat protein located on the surface of lipid droplets in mammalian cells, plays a crucial role in regulating lipid droplet formation and contributing to various cellular processes such as lipid storage and energy homeostasis. Herein, we examine the role that PLIN2 plays in regulating progesterone synthesis in the bovine corpus luteum. Utilizing gene array databases and Western blotting, we have delineated the expression pattern of PLIN2 throughout the follicular to luteal transition. Our findings reveal the presence of PLIN2 in both ovarian follicular and steroidogenic luteal cells, demonstrating an increase in its levels as follicular cells transition into the luteal phase. Moreover, the depletion of PLIN2 via siRNA enhanced progesterone production in small luteal cells, whereas adenovirus-mediated overexpression of both PLIN2 and Perilipin 3 (PLIN3) induced an increase in cytosolic lipid droplet accumulation and decreased hormone-induced progesterone synthesis in these cells. Lastly, in vivo administration of the luteolytic hormone prostaglandin F2α resulted in an upregulation of PLIN2 mRNA and protein expression, accompanied by a decline in serum progesterone. Our findings highlight the pivotal role of PLIN2 in regulating progesterone synthesis in the bovine corpus luteum, as supported by its dynamic expression pattern during the follicular to luteal transition and its responsiveness to luteotropic and luteolytic hormones. We suggest PLIN2 as a potential therapeutic target for modulating luteal function.


Assuntos
Células Lúteas , Perilipina-2 , Progesterona , Animais , Feminino , Bovinos , Progesterona/metabolismo , Perilipina-2/metabolismo , Perilipina-2/genética , Células Lúteas/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Perilipina-3/metabolismo , Corpo Lúteo/metabolismo , Células Cultivadas
16.
FASEB J ; 38(14): e23839, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037418

RESUMO

During early pregnancy in mice, the establishment of uterine receptivity and endometrial decidualization require the extensive proliferation and differentiation of endometrial epithelial cells or stromal cells. Pin1 has been suggested to act as a molecular 'timer' of the cell cycle and is involved in the regulation of cellular proliferation and differentiation by binding many cell-cycle regulatory proteins. However, its physiological role during early pregnancy is still not fully understood. Here, we employed immunohistochemistry to determine the spatiotemporal pattern of Pin1 expression during early pregnancy. We found that Pin1 was mainly localized in subluminal stromal cells on day 4, in the decidual zone on days 5 to 8 of pregnancy and in artificial decidualization. Using a uterine stromal cell culture system, we found that progesterone, but not estrogen, induced the expression of Pin1 in a progesterone receptor-dependent manner. Inhibition of Pin1 in the uterus leads to impaired embryo implantation and decidualization in mice. Notably, a decrease in Pin1 activation affected the functional execution of several implantation- or decidualization-related factors. These findings provide new evidence for a previously unknown function of Pin1 in mediating embryo implantation and decidualization during successful pregnancy establishment and maintenance.


Assuntos
Decídua , Implantação do Embrião , Peptidilprolil Isomerase de Interação com NIMA , Útero , Animais , Feminino , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Implantação do Embrião/fisiologia , Camundongos , Gravidez , Decídua/metabolismo , Decídua/citologia , Útero/metabolismo , Útero/citologia , Progesterona/metabolismo , Células Estromais/metabolismo , Receptores de Progesterona/metabolismo , Células Cultivadas , Endométrio/metabolismo , Endométrio/citologia
17.
FASEB J ; 38(13): e23744, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885031

RESUMO

The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.


Assuntos
Fatores de Transcrição ARNTL , Sistema Hipotálamo-Hipofisário , Ovário , Reprodução , Animais , Feminino , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Ciclo Estral , Fertilidade , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/metabolismo , Progesterona/metabolismo , Prolactina/metabolismo
18.
J Pathol ; 262(4): 467-479, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38185904

RESUMO

Endometrioid adenocarcinoma (EEC) is one of the most common cancers of the female reproductive system. In recent years, much emphasis has been placed on early diagnosis and treatment. PAX2 (Paired box 2) inactivation is reportedly an important biomarker for endometrioid intraepithelial neoplasia (EIN) and EEC. However, the role of PAX2 in EEC carcinogenesis remains unclear. PAX2 expression and associated clinical characteristics were analyzed via The Cancer Genome Atlas, Gene Expression Omnibus, and Cancer Cell Line Encyclopedia databases and clinical paired EIN/EEC tissue samples. Bioinformatic analysis was conducted to identify the putative molecular function and mechanism of PAX2. Cell proliferation, colony formation, cell migration, and invasion assays in vitro, and mouse xenograft models were utilized to study the biological functions of PAX2 in vivo. Pyrosequencing and the demethylating drug 5-Aza-dc were used to verify promoter methylation in clinical tissues and cell lines, respectively. The mechanism underlying the regulatory effect of estrogen (E2) and progesterone (P4) on PAX2 expression was investigated by receptor block assay and double luciferase reporter assay. PAX2 expression was found to be significantly downregulated in EIN and EEC tissues, its overexpression inhibited EEC cell malignant behaviors in vivo and in vitro and inhibited the AKT/mTOR signaling pathway. PAX2 inactivation in EEC was related to promoter methylation, and its expression was regulated by E2 and P4 through their receptors via promoter methylation. Our findings elucidated the expression and function of PAX2 in EEC and have provided hitherto undocumented evidence of the underlying molecular mechanisms. PAX2 expression is suppressed by estrogen prompting its methylation through estrogen receptor. Furthermore, PAX2 regulates the AKT/mTOR signaling pathway to influence EEC progression. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Endometrioide , Hiperplasia Endometrial , Neoplasias do Endométrio , Humanos , Feminino , Animais , Camundongos , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Progesterona/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Metilação , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Estrogênios , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo
19.
J Immunol ; 210(9): 1437-1446, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920387

RESUMO

During human pregnancy the chorion (fetal) lines decidua (maternal) creating the feto-maternal interface. Despite their proximity, resident decidual immune cells remain quiescent during gestation and do not invade the chorion. Infection and infiltration of activated immune cells toward the chorion are often associated with preterm birth. However, the mechanisms that maintain choriodecidual immune homeostasis or compromise immune barrier functions remain unclear. To understand these processes, a two-chamber microphysiological system (MPS) was created to model the human choriodecidual immune interface under normal and infectious conditions in vitro. This MPS has outer (fetal chorion trophoblast cells) and inner chambers (maternal decidual + CD45+ cells [70:30 ratio]) connected by microchannels. Decidual cells were treated with LPS to mimic maternal infection, followed by immunostaining for HLA-DR and HLA-G, immune panel screening by imaging cytometry by time of flight, and immune regulatory factors IL-8 and IL-10, soluble HLA-G, and progesterone (ELISA). LPS induced a proinflammatory phenotype in the decidua characterized by a decrease in HLA-DR and an increase in IL-8 compared with controls. LPS treatment increased the influx of immune cells into the chorion, indicative of chorionitis. Cytometry by time of flight characterized immune cells in both chambers as active NK cells and neutrophils, with a decrease in the abundance of nonproinflammatory cytokine-producing NK cells and T cells. Conversely, chorion cells increased progesterone and soluble HLA-G production while maintaining HLA-G expression. These results highlight the utility of MPS to model choriodecidual immune cell infiltration and determine the complex maternal-fetal crosstalk to regulate immune balance during infection.


Assuntos
Nascimento Prematuro , Progesterona , Gravidez , Feminino , Recém-Nascido , Humanos , Interleucina-8/metabolismo , Antígenos HLA-G/metabolismo , Decídua , Lipopolissacarídeos/metabolismo , Nascimento Prematuro/metabolismo
20.
Exp Cell Res ; 435(2): 113950, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309674

RESUMO

The existing knowledge of the involvement of vinculin (VCL) in the control of ovarian cell functions is insufficient. To understand the role of VCL in the control of basic porcine ovarian granulosa cell functions, we decreased VCL activity by small interfering RNA (VCL siRNA). The expression of VCL, accumulation of VCL protein, cell viability, proliferation (accumulation of PCNA and cyclin B1), proportion of proliferative active cells, apoptosis (accumulation of bax, caspase 3, p53, antiapoptotic marker bcl2, and bax/bcl-2 ratio), DNA fragmentation, and release of steroid hormones and IGF-I were analyzed by RT‒qPCR, Trypan blue exclusion test, quantitative immunocytochemistry, XTT assay, TUNEL assay, and ELISA. The suppression of VCL activity inhibited cell viability, the accumulation of the proliferation-related proteins PCNA and cyclin B1, the antiapoptotic protein bcl2, and the proportion of proliferative active cells. Moreover, VCL siRNA inhibited the release of progesterone, estradiol, and IGF-1. VCL siRNA increased the proportion of the proapoptotic proteins bax, caspase 3, p53, the proportion of DNA fragmented cells, and stimulated testosterone release. Taken together, the present study is the first evidence that inhibition of VCL suppresses porcine granulosa cell functions. Moreover, the results suggest that VCL can be a potent physiological stimulator of ovarian functions.


Assuntos
Progesterona , Proteína Supressora de Tumor p53 , Feminino , Suínos , Animais , Ciclina B1/metabolismo , Ciclina B1/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Vinculina/genética , Vinculina/metabolismo , Progesterona/farmacologia , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Células Cultivadas , Fator de Crescimento Insulin-Like I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA