Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(9): 4607-4621, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29660001

RESUMO

Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Paracentrotus/embriologia , Paracentrotus/genética , Biossíntese de Proteínas , Animais , Proteína Quinase CDC2/biossíntese , Proteína Quinase CDC2/genética , Embrião não Mamífero/enzimologia , Feminino , Fertilização/genética , Óvulo/metabolismo , Paracentrotus/enzimologia , Paracentrotus/metabolismo , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma
2.
Genes Dev ; 26(8): 746-50, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22508722

RESUMO

The duration of S phase in early embryos is often short, and then increases as development proceeds because of the appearance of late-replicating regions of the genome. In the April 1, 2012, issue of Genes & Development, Farrell and colleagues (pp. 714-725) demonstrate that the down-regulation of cyclin-dependent kinase 1 (Cdk1) activity triggers the onset of late-replicating DNA and an increase in S-phase length in Drosophila embryos, revealing an unexpected role for Cdk1 in replication control during development.


Assuntos
Proteína Quinase CDC2/fisiologia , Desenvolvimento Embrionário/genética , Fase S/genética , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/biossíntese , Replicação do DNA , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia
3.
Int Ophthalmol ; 40(2): 343-350, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31571090

RESUMO

PURPOSE: To investigate the overexpression of genes in sebaceous gland carcinoma (SGC) of the eyelid compared to sebaceous adenoma of the eyelid in order to elucidate the molecular mechanism underlying pathogenesis. METHODS: We performed histopathological examination of eyelid tissues surgically removed from four patients diagnosed with SGC (cases 1-3) and sebaceous adenoma (case 4) of the eyelid. Next, we performed global gene expression analysis of surgical tissue samples using a GeneChip® system and the Ingenuity Pathways Knowledge Base. The results of the GeneChip® analysis were explored with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: In the SGC samples, we found that 211, 199, and 199 genes, respectively, showed ≥ 2.0-fold higher expression than those in the sebaceous adenoma sample (case 4); 194 genes were common to all three SGC samples. For the 194 genes with upregulated expression, functional category analysis showed that SGC of the eyelid employed a unique gene network, including cyclin-dependent kinase inhibitor 2A (CDKN2A), cyclin-dependent kinase 1 (CDK1), and cyclin E1 (CCNE1), which are related to cell cycle progression, incidence of tumor, and cell viability. Furthermore, qRT-PCR analysis showed that the expression levels of CDKN2A, CDK1, and CCNE1 were significantly upregulated in all SGC cases compared to those in the sebaceous adenoma case. These data were similar to the results of microarray analysis. CONCLUSION: Overexpression of cell cycle-related genes CDKN2A, CDK1, CCNE1, and their gene network may help elucidate the pathogenic pathway of SGC of the eyelid at the molecular level.


Assuntos
Adenocarcinoma Sebáceo/genética , Proteína Quinase CDC2/genética , Ciclina E/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Palpebrais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Neoplasias das Glândulas Sebáceas/genética , Adenocarcinoma Sebáceo/metabolismo , Adenocarcinoma Sebáceo/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteína Quinase CDC2/biossíntese , Ciclina E/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Neoplasias Palpebrais/metabolismo , Neoplasias Palpebrais/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Proteínas Oncogênicas/biossíntese , RNA Neoplásico/genética , Neoplasias das Glândulas Sebáceas/metabolismo , Neoplasias das Glândulas Sebáceas/patologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/patologia
4.
Dev Biol ; 434(1): 196-205, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274320

RESUMO

Mammalian oocytes are arrested in meiotic prophase from around the time of birth until just before ovulation. Following an extended period of growth, they are stimulated to mature to the metaphase II stage by a preovulatory luteinizing hormone (LH) surge that occurs with each reproductive cycle. Small, growing oocytes are not competent to mature into fertilizable eggs because they do not possess adequate amounts of cell cycle regulatory proteins, particularly cyclin-dependent kinase 1 (CDK1). As oocytes grow, they synthesize CDK1 and acquire the ability to mature. After oocytes achieve meiotic competence, meiotic arrest at the prophase stage is dependent on high levels of cAMP that are generated in the oocyte under the control of the constitutively active Gs-coupled receptor, GPR3. In this study, we examined the switch between GPR3-independent and GPR3-dependent meiotic arrest. We found that the ability of oocytes to mature, as well as oocyte CDK1 levels, were dependent on follicle size, but CDK1 expression in oocytes from preantral follicles was not acutely altered by the activity of follicle stimulating hormone (FSH). Gpr3 was expressed and active in incompetent oocytes within early stage follicles, well before cAMP is required to maintain meiotic arrest. Oocytes from Gpr3-/- mice were less competent to mature than oocytes from Gpr3+/+ mice, as assessed by the time course of germinal vesicle breakdown. Correspondingly, Gpr3-/- oocytes contained significantly lower CDK1 levels than their Gpr3+/+ counterparts that were at the same stage of follicle development. These results demonstrate that GPR3 potentiates meiotic competence, most likely by raising cAMP.


Assuntos
Proteína Quinase CDC2/biossíntese , Pontos de Checagem do Ciclo Celular/fisiologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Prófase Meiótica I/fisiologia , Oócitos/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Sistemas do Segundo Mensageiro/fisiologia , Animais , Proteína Quinase CDC2/genética , AMP Cíclico/genética , Feminino , Camundongos , Camundongos Knockout , Oócitos/citologia , Receptores Acoplados a Proteínas G/genética
5.
Tumour Biol ; 40(4): 1010428318770957, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29663854

RESUMO

OBJECTIVES: Preoperative chemoradiation is currently the standard of care in locally advanced rectal carcinoma, even though a subset of rectal tumors does not achieve major clinically meaningful responses upon neoadjuvant chemoradiation. At present, no molecular biomarkers are available to predict response to neoadjuvant chemoradiation and select resistant tumors willing more intense therapeutic strategies. Thus, BRAF mutational status was investigated for its role in favoring resistance to radiation in colorectal carcinoma cell lines and cyclin-dependent kinase 1 as a target to improve radiosensitivity in BRAF V600E colorectal tumor cells. METHODS: Colony-forming assay and apoptotic rates were evaluated to compare the sensitivity of different colon carcinoma cell lines to ionizing radiation and their radiosensitivity upon exposure to BRAF and/or cyclin-dependent kinase 1 inhibitory/silencing strategies. Cyclin-dependent kinase 1 expression/subcellular distribution was studied by immunoblot analysis. RESULTS: Colon carcinoma BRAF V600E HT29 cells exhibited poor response to radiation compared to BRAF wild-type COLO320 and HCT116 cells. Interestingly, neither radiosensitizing doses of 5-fluoruracil nor BRAF inhibition/silencing significantly improved radiosensitivity in HT29 cells. Of note, poor response to radiation correlated with upregulation/relocation of cyclin-dependent kinase 1 in mitochondria. Consistently, cyclin-dependent kinase 1 inhibition/silencing as well as its targeting, through inhibition of HSP90 quality control pathway, significantly inhibited the clonogenic ability and increased apoptotic rates in HT29 cells upon exposure to radiation. CONCLUSION: These data suggest that BRAF V600E colorectal carcinoma cells are poorly responsive to radiation, and cyclin-dependent kinase 1 represents a target to improve radiosensitivity in BRAF V600E colorectal tumor cells.


Assuntos
Proteína Quinase CDC2/genética , Neoplasias Colorretais/radioterapia , Proteínas Proto-Oncogênicas B-raf/genética , Tolerância a Radiação/genética , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/biossíntese , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Células HCT116 , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células HT29 , Humanos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Radiossensibilizantes/farmacologia
6.
Med Sci Monit ; 24: 8553-8564, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30476929

RESUMO

BACKGROUND Differentially expressed genes (DEGs) of IBC were selected from the Gene Expression Omnibus (GEO) chip data: GSE21422 and GSE21974. Network analysis of the DEGs and IBC-related genes was performed in STRING database to find the core gene. Thus, this study aimed to determine the role of NUSAP1 in invasive breast cancer (IBC) and to investigate its effect on drug susceptibility to epirubicin (E-ADM). MATERIAL AND METHODS The mRNA expression of NUSAP1 was determined by quantitative polymerase chain reaction (q-PCR). The protein expression was detected by Western blotting. Cell growth and growth cycle were detected by MTT assay and flow cytometry, respectively. Cell migration and invasion were tested by Transwell assay. RESULTS Through use of gene network analysis, we found that NUSAP1 interacts with IBC-related genes. NUSAP1 presented high expression in IBC tissue samples and MCF-7 cells. NUSAP1 overexpression promoted the growth, migration, and invasion of MCF-7 cells. While NUSAP1 gene silencing downregulated the expression of genes associated with cell cycle progression in G2/M phase, cyclin D kinase (CDK1) and DLGAP5 arrested cells in G2/M phase and significantly inhibited the growth, migration, and invasion of MCF-7 cells. si-NUSAP1 increased the susceptibility of MCF-7 cells to E-ADM-induced apoptosis. CONCLUSIONS Our study provides evidence that downregulation of NUSAP1 can inhibit the proliferation, migration, and invasion of IBC cells by regulating CDK1 and DLGAP5 expression and enhances the drug susceptibility to E-ADM.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteína Quinase CDC2/biossíntese , Epirubicina/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/biossíntese , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ciclina D/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
7.
PLoS Genet ; 11(4): e1005162, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25894965

RESUMO

In Saccharomyces cerevisiae, Ndd1 is the dedicated transcriptional activator of the mitotic gene cluster, which includes thirty-three genes that encode key mitotic regulators, making Ndd1 a hub for the control of mitosis. Previous work has shown that multiple kinases, including cyclin-dependent kinase (Cdk1), phosphorylate Ndd1 to regulate its activity during the cell cycle. Previously, we showed that Ndd1 was inhibited by phosphorylation in response to DNA damage. Here, we show that Ndd1 is also subject to regulation by protein turnover during the mitotic cell cycle: Ndd1 is unstable during an unperturbed cell cycle, but is strongly stabilized in response to DNA damage. We find that Ndd1 turnover in metaphase requires Cdk1 activity and the ubiquitin ligase SCF(Grr1). In response to DNA damage, Ndd1 stabilization requires the checkpoint kinases Mec1/Tel1 and Swe1, the S. cerevisiae homolog of the Wee1 kinase. In both humans and yeast, the checkpoint promotes Wee1-dependent inhibitory phosphorylation of Cdk1 following exposure to DNA damage. While this is critical for checkpoint-induced arrest in most organisms, this is not true in budding yeast, where the function of damage-induced inhibitory phosphorylation is less well understood. We propose that the DNA damage checkpoint stabilizes Ndd1 by inhibiting Cdk1, which we show is required for targeting Ndd1 for destruction.


Assuntos
Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Mitose/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Proteína Quinase CDC2/biossíntese , Ciclo Celular/genética , Proteínas de Ciclo Celular/biossíntese , Dano ao DNA/genética , Proteínas F-Box/biossíntese , Regulação Fúngica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biossíntese , Fatores de Transcrição/biossíntese , Ubiquitina-Proteína Ligases/biossíntese
8.
Platelets ; 28(5): 491-497, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27780401

RESUMO

Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The purpose of this study is to investigate the effect and molecular mechanism of PRP releasate on proliferation of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP releasate. Cell proliferation was evaluated by 3-[4,5-Dimethylthiazol- 2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and immunocytochemistry with Ki-67 stain. Flow cytometric analysis was used to evaluate the cell cycle progression. Western blot analysis was used to evaluate the protein expressions of PCNA, cyclin E1, cyclin A2, cyclin B1, cyclin dependent kinase (cdk)1 and cdk2. The results revealed that PRP releasate enhanced proliferation of skeletal muscle cells by shifting cells from G1 phase to S phase and G2/M phases. Ki-67 stain revealed the increase of proliferative capability after PRP releasate treatment. Protein expressions including cyclin A2, cyclin B1, cdk1, cdk2 and PCNA were up-regulated by PRP releasate in a dose-dependent manner. It was concluded that PRP releasate promoted proliferation of skeletal muscle cells in association with the up-regulated protein expressions of PCNA, cyclin A2, cyclin B1, cdk1 and cdk2.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/biossíntese , Ciclinas/biossíntese , Músculo Esquelético/metabolismo , Plasma Rico em Plaquetas , Antígeno Nuclear de Célula em Proliferação/biossíntese , Animais , Proteína Quinase CDC2/biossíntese , Ciclina A2/biossíntese , Ciclina B1/biossíntese , Quinase 2 Dependente de Ciclina/biossíntese , Relação Dose-Resposta a Droga , Proteínas Musculares/biossíntese , Músculo Esquelético/citologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
9.
Dev Biol ; 401(2): 276-86, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25732775

RESUMO

The heterochronic pathway controls temporal patterning during Caenorhabditis elegans larval development. The highly conserved let-7 microRNA (miRNA) plays a key role in this pathway, directing the larval-to-adult (L/A) transition. Hence, knowledge of the genetic interactome of let-7 has the potential to provide insight into both control of temporal cell fates and mechanisms of regulation and function of miRNAs. Here, we report the results of a genome-wide, RNAi-based screen for suppressors of let-7 mutant vulval bursting. The 201 genetic interaction partners of let-7 thus identified include genes that promote target silencing activity of let-7, seam cell differentiation, or both. We illustrate the suitability of our approach by uncovering the mitotic cyclin-dependent kinase CDK-1 as a downstream effector of let-7 that affects both seam cell proliferation and differentiation, and by identifying a core set of candidate modulators of let-7 activity, which includes all subunits of the condensin II complex. We propose that the genes identified in our screen thus constitute a valuable resource for studies of the heterochronic pathway and miRNAs.


Assuntos
Padronização Corporal/genética , Proteína Quinase CDC2/genética , Caenorhabditis elegans/embriologia , MicroRNAs/genética , Adenosina Trifosfatases/genética , Animais , Proteína Quinase CDC2/biossíntese , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Complexos Multiproteicos/genética , Interferência de RNA , Fatores de Transcrição/genética
10.
Med Oral Patol Oral Cir Bucal ; 20(1): e7-12, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25129248

RESUMO

OBJECTIVES: To evaluate the clinical significance of cyclin-dependent kinase 1 (CDK1) in 77 oral squamous cell carcinomas (OSCC) using immunohistochemical methods. STUDY DESIGN: Immunohistochemical expression of CDK1 was compared with various clinicopathological features in 77 OSCC and 60 controlled epithelia adjacent to the tumours. In addition, correlation of CDK1 expression and prognostic and the 5-year accumulative survival rate of OSCC were investigated. RESULTS: The CDK1 protein was expressed in 52 cases of 77 tumor tissues (67.5%), compared with 21 cases of 60 controlled (35.0%). The expression of CDK1 was significantly correlated with the histological grade of OSCC (P<0.05). The CDK1 protein was over-expressed in recurrent tumors or in those with lymph node metastasis. Statistical analysis showed a significant reduction in the 5-year accumulative survival rate in CDK1 positive cases compared with CDK1 negative cases (P<0.05). Namely, the CDK1 positive patients had poor prognosis. CONCLUSIONS: The expression of CDK1 might serve as malignant degree and prognostic markers for the survival of OSCC.


Assuntos
Proteína Quinase CDC2/biossíntese , Carcinoma de Células Escamosas/enzimologia , Neoplasias Bucais/enzimologia , Proteína Quinase CDC2/análise , Carcinoma de Células Escamosas/química , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/química , Taxa de Sobrevida
11.
Am J Physiol Cell Physiol ; 306(6): C540-50, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24477232

RESUMO

Cardiac fibrosis, a known risk factor for heart disease, is typically caused by uncontrolled proliferation of fibroblasts and excessive deposition of extracellular matrix proteins in the myocardium. Cyclin-dependent kinase 1 (CDK1) is involved in the control of G2/M transit phase of the cell cycle. Here, we showed that isoproterenol (ISO)-induced cardiac fibrosis is associated with increased levels of CDK1 exclusively in fibroblasts in the adult mouse heart. Treatment of primary embryonic ventricular cell cultures with ISO (a nonselective ß-adrenergic receptor agonist) increased CDK1 protein expression in fibroblasts and promoted their cell cycle activity. Quantitative PCR analysis confirmed that ISO increases CDK1 transcription in a transient manner. Further, the ISO-responsive element was mapped to the proximal -100-bp sequence of the CDK1 promoter region using various 5'-flanking sequence deletion constructs. Sequence analysis of the -100-bp CDK1 minimal promoter region revealed two putative nuclear factor-Y (NF-Y) binding elements. Overexpression of the NF-YA subunit in primary ventricular cultures significantly increased the basal activation of the -100-bp CDK1 promoter construct but not the ISO-induced transcription of the minimal promoter construct. In contrast, dominant negative NF-YA expression decreased the basal activity of the minimal promoter construct and ISO treatment fully rescued the dominant negative effects. Furthermore, site-directed mutagenesis of the distal NF-Y binding site in the -100-bp CDK1 promoter region completely abolished both basal and ISO-induced promoter activation of the CDK1 gene. Collectively, our results raise an exciting possibility that targeting CDK1 or NF-Y in the diseased heart may inhibit fibrosis and subsequently confer cardioprotection.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Proteína Quinase CDC2/metabolismo , Miocárdio/enzimologia , Miocárdio/patologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Fator de Ligação a CCAAT/genética , Proteína Quinase CDC2/biossíntese , Proteína Quinase CDC2/genética , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Fibrose , Isoproterenol , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , Elementos de Resposta
12.
Int J Cancer ; 135(5): 1060-71, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24531984

RESUMO

Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.


Assuntos
Sistema ASC de Transporte de Aminoácidos/biossíntese , Glutamina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/biossíntese , Melanoma/patologia , Complexos Multiproteicos/antagonistas & inibidores , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Aminoácidos Cíclicos/farmacologia , Compostos de Benzil/farmacologia , Transporte Biológico , Proteína Quinase CDC2/biossíntese , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Humanos , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Melanoma/metabolismo , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/genética , Proteínas Proto-Oncogênicas B-raf/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Serina/análogos & derivados , Serina/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Esferoides Celulares , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Enzimas de Conjugação de Ubiquitina/biossíntese
13.
Cell Immunol ; 290(1): 138-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24978614

RESUMO

Inducible regulatory T-cells (iTReg) can be generated from CD4(+)Foxp3(-) naïve conventional T-cells by a combination of TGF-ß and T-cell receptor (TCR) signaling. It is of enormous clinical importance to identify agents that can promote the generation and differentiation of functional iTreg cells. We have established a phenotypic screening platform to identify new compounds that can promote the TGFß-mediated iTreg differentiation. We have found Kenpaullone, a potent CDK1, CDK2 and CDK5 inhibitor, as new enhancer for iTreg cell differentiation. Kenpaullone promotes iTreg cell differentiation through increased and prolonged transcription of foxp3 gene by enhancing TGFß-Smad3 signaling pathway. Thus, we have demonstrated that CDK2 is the biological target of Kenpaullone and proven that CDK2 is a novel negative regulator of iTreg cell differentiation.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Proteína Smad3/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Apoptose , Benzazepinas/farmacologia , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/biossíntese , Proteína Quinase CDC2/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Quinase 2 Dependente de Ciclina/biossíntese , Quinase 2 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Indóis/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/efeitos dos fármacos
14.
Carcinogenesis ; 34(6): 1323-30, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23404993

RESUMO

Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Ácido Oleanólico/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/biossíntese , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina B1/biossíntese , Ciclo-Oxigenase 2/biossíntese , Citocromos c/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Transplante de Neoplasias , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transplante Heterólogo
15.
Cancer Invest ; 31(8): 555-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24044460

RESUMO

This study showed that silencing BMP4 expression significantly activated caspase-2, 3, and 9, while decreasing Matrigel colony formation in Cytarabine (Ara-C)-treated leukemia HL-60 cells. In contrast, Ara-C significantly upregulated Atg5 and Beclin-1 expression, the ratio of LC3-II/LC3-I, and CDK1 and cyclin B1 expression in leukemia cells expressing BMP4. BafA significantly sensitized the apoptotic effect of Ara-C in leukemia cells. Injection of Ara-C significantly inhibited tumor growth in mice inoculated with leukemia cells with BMP4 silenced. In conclusion, BMP4 plays a crucial role in the chemoresistance of leukemia cells through the activation of autophagy and subsequent inhibition of apoptosis.


Assuntos
Apoptose , Autofagia , Proteína Morfogenética Óssea 4/metabolismo , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/fisiopatologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Proteína Morfogenética Óssea 4/genética , Proteína Quinase CDC2/biossíntese , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina B1/biossíntese , Citarabina/farmacologia , Ativação Enzimática , Feminino , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/biossíntese , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Eur Rev Med Pharmacol Sci ; 16(12): 1680-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23161040

RESUMO

OBJECTIVES: A number of factors involved in the control of energy balance and metabolism act as modulators of gonadal axis. Ghrelin, a peptide secreted from the stomach and hypothalamus, has emerged as an orexigenic food intake controlling signal acting upon hypothalamus. Recently, the potential reproductive role of ghrelin has received great attention. This study was designed to investigate the influence of food restriction and consequent metabolic hormone (ghrelin) on the level and gene expression of female reproductive hormones in adult rats. MATERIALS AND METHODS: To study the effect of chronic food restriction on ghrelin level in adult female rats and its relation to female reproductive hormones, 32 adult female Sprague Dawley rats divided into 4 groups: Group I (control group) comprised 8 rats fed ad libitum for 30 days, Group II, III and IV (food-restricted groups for 10, 20 and 30 days respectively) each consisted of 8 rats fed 50% of ad libitum intake determined by the amount of food consumed by the control group. RESULTS: Mean body weight of food restricted rats was observed to decrease during the period of the experiment. Food restriction produced significant increase of serum ghrelin with significant decrease of both gastric and hypothalamic ghrelin accompanied with significant increase in its gene expression in stomach and hypothalamus. Estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels showed significant decrease correlated with down-regulation of gonadotropins, cyclin-dependent kinase (cdc2), cyclin B and kisspeptin (Kiss1) genes in food restricted rats compared with control group. CONCLUSIONS: Ghrelin could be one of the hormones responsible for the suppression of female reproductive axis in case of negative energy balance. Thus, ghrelin may operate as an autocrine/paracrine regulator of ovarian function. Overall, ghrelin may represent an additional link between body weight homeostasis and reproductive function.


Assuntos
Proteína Quinase CDC2/biossíntese , Ciclina B/biossíntese , Hormônio Foliculoestimulante/metabolismo , Privação de Alimentos/fisiologia , Regulação da Expressão Gênica/fisiologia , Grelina/biossíntese , Hormônio Luteinizante/metabolismo , Animais , Peso Corporal/fisiologia , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/genética , Mucosa Gástrica/metabolismo , Grelina/fisiologia , Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/biossíntese , Hormônio Luteinizante/genética , Ovário/metabolismo , Hipófise/metabolismo , Ratos , Ratos Sprague-Dawley , Soro/metabolismo
17.
Biomolecules ; 11(6)2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067359

RESUMO

DNMT3A mutations are frequently identified in acute myeloid leukemia (AML) and indicate poor prognosis. Previously, we found that the hotspot mutation DNMT3A R882H could upregulate CDK1 and induce AML in conditional knock-in mice. However, the mechanism by which CDK1 is involved in leukemogenesis of DNMT3A mutation-related AML, and whether CDK1 could be a therapeutic target, remains unclear. In this study, using fluorescence resonance energy transfer and immunoprecipitation analysis, we discovered that increased CDK1 could compete with EZH2 to bind to the PHD-like motif of DNMT3A, which may disturb the protein interaction between EZH2 and DNMT3A. Knockdown of CDK1 in OCI-AML3 cells with DNMT3A mutation markedly inhibited proliferation and induced apoptosis. CDK1 selective inhibitor CGP74514A (CGP) and the pan-CDK inhibitor flavopiridol (FLA) arrested OCI-AML3 cells in the G2/M phase, and induced cell apoptosis. CGP significantly increased CD163-positive cells. Moreover, the combined application of CDK1 inhibitor and traditional chemotherapy drugs synergistically inhibited proliferation and induced apoptosis of OCI-AML3 cells. In conclusion, this study highlights CDK1 overexpression as a pathogenic factor and a potential therapeutic target for DNMT3A mutation-related AML.


Assuntos
Proteína Quinase CDC2/biossíntese , Carcinogênese/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Animais , Proteína Quinase CDC2/genética , Carcinogênese/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/genética
18.
Int J Biol Sci ; 17(7): 1613-1628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994848

RESUMO

The treatment of advanced prostate cancer, castration-resistant prostate cancer, remains challenging. The mechanisms of action of ATP binding cassette subfamily C member 5 (ABCC5) in prostate cancer and its relationship with drug resistance are still unclear. Expression and prognostic analyses of ABCC5 were performed through bioinformatic methods and immunohistochemistry analyses in multiple public databases as well as in our own prostate cancer cohort. The biological function of ABCC5 in prostate cancer cells was evaluated by in vitro and in vivo cell proliferation and migration and invasion assays. The regulation of CDK1 by ABCC5 was determined via RT-qPCR, western blots, and immunofluorescence. ABCC5 was significantly overexpressed in prostate cancer and positively associated with unfavorable clinicopathological features and prognosis. Upregulation of ABCC5 could enhance the cell proliferation, migration, and invasion of prostate cancer in vitro and in vivo. Mechanistically, ABCC5 exerts a protumor effect by binding to and inhibiting the protein degradation of CDK1, which promotes the phosphorylation of AR at Ser81 by CDK1 and activates the transcriptional activity of AR on target genes. Moreover, the addition of a CDK1 inhibitor or knockdown of CDK1 significantly improved the efficacy of enzalutamide on prostate cancer cells. The ABCC5-CDK1-AR regulatory pathway could be a potential therapeutic target for advanced prostate cancer, especially castration-resistant prostate cancer (CRPC), to enhance the therapeutic effect of enzalutamide.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Apoptose , Benzamidas/farmacologia , Proteína Quinase CDC2/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/biossíntese , Proteína Quinase CDC2/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Fosforilação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA Neoplásico/genética , Transdução de Sinais , Regulação para Cima
19.
Medicine (Baltimore) ; 100(32): e26474, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34397869

RESUMO

ABSTRACT: This study is to identify potential biomarkers and therapeutic targets for lung adenocarcinoma (LUAD).GSE6044 and GSE118370 raw data from the Gene Expression Omnibus database were normalized with Robust Multichip Average. After merging these two datasets, the combat function of sva packages was used to eliminate batch effects. Then, limma packages were used to filtrate differentially expressed genes. We constructed protein-protein interaction relationships using STRING database and hub genes were identified based on connectivity degrees. The cBioportal database was used to explore the alterations of the hub genes. The promoter methylation of cyclin dependent kinase 1 (CDK1) and polo-like Kinase 1 (PLK1) and their association with tumor immune infiltration in patients with LUAD were investigated using DiseaseMeth version 2.0 and TIMER databases. The Cancer Genome Atlas-LUAD dataset was used to perform gene set enrichment analysis.We identified 10 hub genes, which were upregulated in LUAD, among which 8 were successfully verified in the Cancer Genome Atlas and Oncomine databases. Kaplan-Meier analysis indicated that the expressions of CDK1 and PLK1 in LUAD patients were associated with overall survival and disease-free survival. The methylation levels in the promoter regions of these 2 genes in LUAD patients were lower than those in normal lung tissues. Their expressions in LUAD were associated with tumor stages and relative abundance of tumor infiltrating immune cells, such as B cells, CD4+ T cells, and macrophages. Moreover, cell cycle, DNA replication, homologous recombination, mismatch repair, P53 signaling pathway, and small cell lung cancer signaling were significantly enriched in CDK1 and PLK1 high expression phenotype.CDK1 and PLK1 may be used as potential biomarkers and therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteína Quinase CDC2/biossíntese , Proteínas de Ciclo Celular/biossíntese , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Prognóstico , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , RNA Neoplásico/genética , Transdução de Sinais , Quinase 1 Polo-Like
20.
J Exp Med ; 183(4): 1663-8, 1996 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-8666924

RESUMO

The hyaluronan (HA) receptor RHAMM is an important regulator of cell growth. Overexpression of RHAMM is transforming and is required for H-ras transformation. The molecular mechanism underlying growth control by RHAMM and other extracellular matrix receptors remains largely unknown. We report that soluble RHAMM induces G2/M arrest by suppressing the expression of Cdc2/Cyclin B1, a protein kinase complex essential for mitosis. Down-regulation of RHAMM by use of dominant negative mutants or antisense of mRNA also decreases Cdc2 protein levels. Suppression of Cdc2 occurs as a result of an increased rate of cdc2 mRNA degradation. Moreover, tumor cells treated with soluble RHAMM are unable to form lung metastases. Thus, we show that mitosis is directly linked to RHAMM through control of Cdc2 and Cyclin B1 expression. Failure to sustain levels of Cdc2 and Cyclin B1 proteins leads to cell cycle arrest.


Assuntos
Proteína Quinase CDC2/biossíntese , Ciclina B , Ciclinas/biossíntese , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Mitose/fisiologia , Animais , Carcinoma , Linhagem Celular , Ciclina B1 , Proteínas da Matriz Extracelular/genética , Fibrossarcoma , Glutationa Transferase/genética , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/secundário , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Solubilidade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA