Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 632(8024): 357-365, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987585

RESUMO

In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.


Assuntos
Densidade Óssea , Osso e Ossos , Encéfalo , Hormônios , Mães , Proteína Sobre-Expressa em Nefroblastoma , Osteogênese , Adolescente , Animais , Feminino , Humanos , Masculino , Camundongos , Envelhecimento , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Remodelação Óssea , Reabsorção Óssea/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Cálcio/administração & dosagem , Cálcio/metabolismo , Lactação/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Hormônios/metabolismo
2.
Brain Res ; 1827: 148756, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199307

RESUMO

Neural stem/progenitor cells (NSPCs) hold immense promise in clinical applications, yet the harsh conditions resulting from central nervous system (CNS) injuries, particularly oxidative stress, lead to the demise of both native and transplanted NSPCs. Cellular communication network factor 3 (CCN3) exhibits a protective effect against oxidative stress in various cell types. This study investigates the impact of CCN3 on NSPCs apoptosis induced by oxidative stress. To establish models of primary cultured mouse NSPCs under oxidative stress, we exposed them to 50 µM H2O2 for 4 h. Remarkably, pre-exposing CCN3 exacerbated the H2O2-induced decline in cell viability in a concentration-dependent manner. However, employing gene-targeted siRNA to inhibit CCN3 protected NSPCs against H2O2-induced cell death. Conversely, CCN3 replenishment reversed this protective effect, as evidenced by TUNEL staining, the ratio of Cleaved-caspase-3 to Pro-caspase-3, and Bcl-2/Bax. Further investigations revealed that CCN3 pretreatment increased the phosphorylation level of p38 MAPK, while silencing CCN3 diminished p38 MAPK activation. Ultimately, the impact of changes in CCN3 protein expression on H2O2-induced apoptosis was nullified using anisomycin (a p38 activator) and SB 203580 (a p38 inhibitor). Our findings suggest that CCN3 inhibition prevents H2O2-induced cell death in cultured mouse NSPCs via the p38 pathway. These discoveries may contribute to the development of strategies aimed at enhancing the survival of both endogenous and transplanted NSPCs following CNS oxidative stress insults.


Assuntos
Peróxido de Hidrogênio , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Estresse Oxidativo , Apoptose , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA