RESUMO
We previously reported the usefulness of droplet digital polymerase chain reaction (ddPCR) for the assessment of Human epithelial growth factor receptor 2 (HER2) gene amplification in breast cancer using formalin-fixed and paraffin-embedded sections. In our previous study, we combined HER2/CEP17 ratio (HER2 gene signals to chromosome 17 signals) with ddPCR and tumor content ratio (TCR) of each sample and determined the HER2 status by adopting a two-dimensional chart. This "ddPCR-TCR method" showed a high concordance with conventional HER2 status. In this study, we updated our method to assess the HER2 status of breast cancer in a more quantitative manner. We combined obtained data of the ddPCR ratio [Rx ] and TCR [x]; we calculated "(Rx - 1)/x + 1" for 41 samples with primary breast cancer and named the value led by this formula as "eHER2 (estimated HER2/CEP17 ratio of a tumor cell)". eHER2 was equivalent to conventional in situ hybridization (ISH) HER2/CEP17 ratio in most cases. eHER2 and ISH ratio showed a strong correlation (Spearman rank correlation ρ = 0.70, p < 0.0001). The obtained results indicated that eHER2 is a potential tool for HER2 status diagnosis in breast cancer.
Assuntos
Neoplasias da Mama , Proteínas Oncogênicas v-erbB/genética , Reação em Cadeia da Polimerase/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Genes erbB-2 , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Inclusão em Parafina , Patologia MolecularRESUMO
Meningioma (MGM) is the most common type of intracranial tumor in adults. The validation of novel prognostic biomarkers to better inform tumor stratification and clinical prognosis is urgently needed. Many molecular and cellular alterations have been described in MGM tumors over the past few years, providing a rational basis for the identification of biomarkers and therapeutic targets. The role of receptor tyrosine kinases (RTKs) as oncogenes, including those of the ErbB family of receptors, has been well established in several cancer types. Here, we review histological, molecular, and clinical evidence suggesting that RTKs, including the epidermal growth factor receptor (EGFR, ErbB1), as well as other members of the ErbB family, may be useful as biomarkers and therapeutic targets in MGM.
Assuntos
Meningioma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Biomarcadores Tumorais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Meningioma/fisiopatologia , Proteínas Oncogênicas v-erbB/genética , Proteínas Oncogênicas v-erbB/metabolismo , Fosforilação , Prognóstico , Receptores Proteína Tirosina Quinases/fisiologia , Receptor ErbB-2/metabolismo , Transdução de Sinais , Tirosina/metabolismoRESUMO
AIMS: Central sensitization playsimportant roles in cyclophosphamide (CYP)-induced cystitis. In addition, as a visceral pain, CYP-induced chronic pain shares common pathophysiological mechanisms with neuropathic pain. Previous studies demonstrated that neuregulin-1 (Nrg1)-ErbB signaling contributes to neuropathic pain, but whether and how this signaling influences mechanical allodynia in CYP-induced cystitis is unclear. This study aimed to determine whether and how Nrg1-ErbB signaling modulates mechanical allodynia in a CYP-induced cystitis rat model. METHODS: Systemic injection with CYP was used to establish a rat model of bladder pain syndrome/interstitial cystitis (BPS/IC). An irreversible ErbB family receptor inhibitor, PD168393, and exogenous Nrg1 were intrathecally injected to modulate Nrg1-ErbB signaling. Mechanical allodynia in the lower abdomen was assessed with von-Frey filaments using the up-down method. Western blot analysis and immunofluorescence staining were used to measure the expression of Nrg1-ErbB signaling, Iba-1, p-p38, and IL-1ß in the L6-S1 spinal dorsal horn (SDH). RESULTS: We observed upregulation of Nrg1-ErbB signaling as well as overexpression of the microglia activation markers Iba-1 and p-p38 and the proinflammatory factor, interleukin-1ß (IL-1ß), in the SDH of the cystitis group. Further, treatment with PD168393 attenuated mechanical allodynia in CYP-induced cystitis and inhibited microglia activation, leading to decreased production of IL-1ß. The inhibitor PD168393 reversed the algesic effect of exogenous Nrg1 on the cystitis model. CONCLUSIONS: Nrg1-ErbB signaling may promote microglia activation, contributing to mechanical allodynia of CYP-induced cystitis. Our study showed that modulation of Nrg1-ErbB signaling may have therapeutic value for treating pain symptoms in BPS/IC.
Assuntos
Cistite/induzido quimicamente , Hiperalgesia/induzido quimicamente , Microglia , Neuregulina-1/fisiologia , Proteínas Oncogênicas v-erbB/fisiologia , Animais , Cistite/complicações , Cistite/tratamento farmacológico , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Injeções Espinhais , Ativação de Macrófagos , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
While the small GTPase Rac1 and its effectors are well-established mediators of mitogenic and motile signaling by tyrosine kinase receptors and have been implicated in breast tumorigenesis, little is known regarding the exchange factors (Rac-GEFs) that mediate ErbB receptor responses. Here, we identify the PIP(3)-Gßγ-dependent Rac-GEF P-Rex1 as an essential mediator of Rac1 activation, motility, cell growth, and tumorigenesis driven by ErbB receptors in breast cancer cells. Notably, activation of P-Rex1 in breast cancer cells requires the convergence of inputs from ErbB receptors and a Gßγ- and PI3Kγ-dependent pathway. Moreover, we identified the GPCR CXCR4 as a crucial mediator of P-Rex1/Rac1 activation in response to ErbB ligands. P-Rex1 is highly overexpressed in human breast cancers and their derived cell lines, particularly those with high ErbB2 and ER expression. In addition to the prognostic and therapeutic implications, our findings reveal an ErbB effector pathway that is crucial for breast cancer progression.
Assuntos
Neoplasias da Mama/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Células Tumorais CultivadasRESUMO
PURPOSE: Oxygen therapy is often required to treat newborn infants with respiratory disorders. Prolonged exposure of neonatal rats to hyperoxia reduced alveolar septation, increased terminal air space size, and increased lung fibrosis; these conditions are very similar to those of human bronchopulmonary dysplasia. Epigenetic regulation of gene expression plays a crucial role in bronchopulmonary dysplasia development. METHOD: We reared Sprague-Dawley rat pups in either room air (RA, n = 24) or an atmosphere containing 85% O2 (n = 26) from Postnatal Days 1 to 14. Methylated DNA immunoprecipitation (MeDIP) was used to analyze genome-wide DNA methylation in lung tissues of neonatal rats. Hyperoxia-exposed rats exhibited larger air spaces and thinner septa than RA-exposed rats did on Postnatal Day 14. The rats exposed to hyperoxia exhibited significantly higher mean linear intercepts than did the rats exposed to RA. We applied MeDIP next-generation sequencing for profiling changes in DNA methylation in the rat lungs exposed to hyperoxia and RA. We performed bioinformatics and pathway analyses on the raw sequencing data to identify differentially methylated candidate genes. RESULTS: Our in vivo model revealed that neonatal hyperoxia exposure arrested alveolarization on Postnatal Day 14. We found that the ErbB, actin cytoskeleton, and focal adhesion signaling pathways are epigenetically modulated by exposure to hyperoxia. We demonstrated that hyperoxia exposure contribute in delaying lung development through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in alveolarization. CONCLUSIONS: These data indicate that aberrant DNA methylation and deregulation of the actin cytoskeleton and focal adhesion pathways of lung tissues may be involved in the pathophysiology of hyperoxia-induced arrested alveolarization.
Assuntos
Citoesqueleto de Actina/genética , Displasia Broncopulmonar/genética , Metilação de DNA , Adesões Focais/genética , Hiperóxia/genética , Pulmão/metabolismo , Proteínas Oncogênicas v-erbB/genética , Animais , Animais Recém-Nascidos , Epigênese Genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Imunoprecipitação , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genéticaRESUMO
Pigment cells in vertebrates are derived from the neural crest (NC), a pluripotent and migratory embryonic cell population. In fishes, larval melanophores develop during embryogenesis directly from NC cells migrating along dorsolateral and ventromedial paths. The embryonic origin of the melanophores that emerge during juvenile development in the skin to contribute to the striking colour patterns of adult fishes remains elusive. We have identified a small set of melanophore progenitor cells (MPs) in the zebrafish (Danio rerio, Cyprinidae) that is established within the first 2 days of embryonic development in close association with the segmentally reiterated dorsal root ganglia (DRGs). Lineage analysis and 4D in vivo imaging indicate that progeny of these embryonic MPs spread segmentally, giving rise to the melanophores that create the adult melanophore stripes. Upon depletion of larval melanophores by morpholino knockdown of Mitfa, the embryonic MPs are prematurely activated; their progeny migrate along the spinal nerves restoring the larval pattern and giving rise to postembryonic MPs associated with the spinal nerves. Mutational or chemical inhibition of ErbB receptors blocks all early NC migration along the ventromedial path, causing a loss of DRGs and embryonic MPs. We show that the sparse like (slk) mutant lacks larval and metamorphic melanophores and identify kit ligand a (kitlga) as the underlying gene. Our data suggest that kitlga is required for the establishment or survival of embryonic MPs. We propose a model in which DRGs provide a niche for the stem cells of adult melanophores.
Assuntos
Linhagem da Célula/genética , Células-Tronco Embrionárias/fisiologia , Melanóforos/fisiologia , Proteínas Oncogênicas v-erbB/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Peixe-Zebra/embriologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Movimento Celular/fisiologia , Embrião não Mamífero , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Melanóforos/metabolismo , Morfolinos/farmacologia , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Proteínas Oncogênicas v-erbB/genética , Proteínas Oncogênicas v-erbB/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologiaRESUMO
In acute pulmonary inflammation, danger is first recognized by epithelial cells lining the alveolar lumen and relayed to vascular responses, including leukocyte recruitment and increased endothelial permeability. We supposed that this inflammatory relay critically depends on the immunological function of lung interstitial cells such as smooth muscle cells (SMC). Mice with smooth muscle protein-22α promotor-driven deficiency of the disintegrin and metalloproteinase (ADAM) 17 (SM22-Adam17(-/-)) were investigated in models of acute pulmonary inflammation (LPS, cytokine, and acid instillation). Underlying signaling mechanisms were identified in cultured tracheal SMC and verified by in vivo reconstitution experiments. SM22-Adam17(-/-) mice showed considerably decreased cytokine production and vascular responses in LPS- or acid-induced pulmonary inflammation. In vitro, ADAM17 deficiency abrogated cytokine release of primary SMC stimulated with LPS or supernatant of acid-exposed epithelial cells. This was explained by a loss of ADAM17-mediated growth factor shedding. LPS responses required ErbB1/epidermal growth factor receptor transactivation by TGFα, whereas acid responses required ErbB4 transactivation by neuregulins. Finally, LPS-induced pulmonary inflammation in SM22-Adam17(-/-) mice was restored by exogenous TGFα application, confirming the involvement of transactivation pathways in vivo. This highlights a new decisive immunological role of lung interstitial cells such as SMC in promoting acute pulmonary inflammation by ADAM17-dependent transactivation.
Assuntos
Proteínas ADAM/metabolismo , Receptores ErbB/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Pneumonia/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/genética , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Oncogênicas v-erbB/genética , Pneumonia/genética , Regiões Promotoras Genéticas/genética , Receptor ErbB-4 , Ativação Transcricional/genética , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismoRESUMO
The ErbB network is dysregulated in many solid tumors. To exploit this, we have developed a chimeric Ag receptor (CAR) named T1E28z that targets several pathogenetically relevant ErbB dimers. T1E28z is coexpressed with a chimeric cytokine receptor named 4αß (combination termed T4), enabling the selective expansion of engineered T cells using IL-4. Human T4(+) T cells exhibit antitumor activity against several ErbB(+) cancer types. However, ErbB receptors are also expressed in several healthy tissues, raising concerns about toxic potential. In this study, we have evaluated safety of T4 immunotherapy in vivo using a SCID beige mouse model. We show that the human T1E28z CAR efficiently recognizes mouse ErbB(+) cells, rendering this species suitable to evaluate preclinical toxicity. Administration of T4(+) T cells using the i.v. or intratumoral routes achieves partial tumor regression without clinical or histopathologic toxicity. In contrast, when delivered i.p., tumor reduction is accompanied by dose-dependent side effects. Toxicity mediated by T4(+) T cells results from target recognition in both tumor and healthy tissues, leading to release of both human (IL-2/IFN-γ) and murine (IL-6) cytokines. In extreme cases, outcome is lethal. Both toxicity and IL-6 release can be ameliorated by prior macrophage depletion, consistent with clinical data that implicate IL-6 in this pathogenic event. These data demonstrate that CAR-induced cytokine release syndrome can be modeled in mice that express target Ag in an appropriate distribution. Furthermore, our findings argue that ErbB-retargeted T cells can achieve therapeutic benefit in the absence of unacceptable toxicity, providing that route of administration and dose are carefully optimized.
Assuntos
Imunoterapia Adotiva , Neoplasias/imunologia , Proteínas Oncogênicas v-erbB/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Linfócitos T/metabolismo , Animais , Linhagem Celular , Humanos , Interferon gama/biossíntese , Interferon gama/metabolismo , Interleucina-2/biossíntese , Interleucina-2/metabolismo , Interleucina-4 , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Macrófagos , Camundongos , Camundongos SCID , Neoplasias/terapia , Transdução de SinaisRESUMO
Neuregulin (Nrg)/ErbB and integrin signaling pathways are critical for the normal function of the embryonic and adult heart. Both systems activate several downstream signaling pathways, with different physiological outputs: cell survival, fibrosis, excitation-contraction coupling, myofilament structure, cell-cell and cell-matrix interaction. Activation of ErbB2 by Nrg1ß in cardiomycytes or its overexpression in cancer cells induces phosphorylation of FAK (Focal Adhesion Kinase) at specific sites with modulation of survival, invasion and cell-cell contacts. FAK is also a critical mediator of integrin receptors, converting extracellular matrix alterations into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular non-compaction whereas cardiac restriction in adult hearts is well tolerated. Nevertheless, these hearts are more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and ischemic injury. As FAK is both downstream and specifically activated by integrins and Nrg-1ß, here we will explore the role of FAK in the heart as a protective factor and as possible mediator of the crosstalk between the ErbB and Integrin receptors. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Assuntos
Cardiomegalia/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Integrinas/genética , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Oncogênicas v-erbB/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Comunicação Celular , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Humanos , Integrinas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Neuregulina-1/genética , Neuregulina-1/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Ligação Proteica , Transdução de SinaisRESUMO
ARRY-334543 is a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases. We conducted this study to determine whether ARRY-334543 can enhance the efficacy of conventional anticancer drugs through interaction with ABC transporters. Lung cancer cell line NCI-H460 and its ABCG2-overexpressing NCI-H460/MX20, as well as the ABCG2-, ABCB1-, and ABCC10-overexpressing transfected cell lines were used for the reversal study. Our results demonstrated that ARRY-334543 (1.0 µM) significantly reversed ABCG2-mediated multidrug resistance (MDR) by directly inhibiting the drug efflux function of ABCG2, resulting in the elevated intracellular accumulation of chemotherapeutic drugs in the ABCG2-overexpressing cell lines. In addition, in isolated membranes, ARRY-334543 stimulated ATPase activity and inhibited photolabeling of ABCG2 with [(125)I]-iodoarylazidoprazosin in a concentration-dependent manner indicating that this drug directly interacts at the drug-binding pocket of this transporter. ARRY-334543 (1.0 µM) only slightly reversed ABCB1- and partially reversed ABCC10-mediated MDR suggesting that it exhibits high affinity toward ABCG2. Moreover, homology modeling predicted the binding conformation of ARRY-334543 at Arg482 centroid-based grid of ABCG2. However, ARRY-334543 at reversal concentrations did not affect the expression level of ABCG2, AKT and ERK1/2 and regulate the re-localization of ABCG2. We conclude that ARRY-334543 significantly reverses drug resistance mediated by ABCG2.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Tiazóis/administração & dosagem , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/química , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Proteínas Oncogênicas v-erbB/genética , Paclitaxel/administração & dosagem , Ligação Proteica , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genéticaRESUMO
The transition from mitosis to meiosis is unique to germ cells. In murine embryonic ovaries and juvenile testes, retinoic acid (RA) induces meiosis via the stimulated by retinoic acid gene 8 (Stra8), but its molecular pathway requires elucidation. We present genetic evidence in vivo and in vitro that neuregulins (NRGs) are essential for the proliferation of spermatogonia and the initiation of meiosis. Tamoxifen (TAM) was injected into 14-day post-partum (dpp) Sertoli cell-specific conditional Nrg1(Ser-/-) mutant mice. TAM induced testis degeneration, suppressed BrdU incorporation into spermatogonia and pre-leptotene primary spermatocytes, and decreased and increased the number of STRA8-positive and TUNEL-positive cells, respectively. In testicular organ cultures from 5-6 dpp wild-type mice and cultures of their re-aggregated spermatogonia and Sertoli cells, FSH, RA [all-trans-retinoic acid (ATRA), AM580, 9-cis-RA] and NRG1 promoted spermatogonial proliferation and meiotic initiation. However, TAM treatment of testicular organ cultures from the Nrg1(Ser-/-) mutants suppressed spermatogonial proliferation and meiotic initiation that was promoted by FSH or AM580. In re-aggregated cultures of purified spermatogonia, NRG1, NRG3, ATRA and 9-cis-RA promoted their proliferation and meiotic initiation, but neither AM580 nor FSH did. In addition, FSH, RAs and NRG1 promoted Nrg1 and Nrg3 mRNA expression in Sertoli cells. These results indicate that in juvenile testes RA and FSH induced meiosis indirectly through Sertoli cells when NRG1 and NRG3 were upregulated, as NRG1 amplified itself and NRG3. The amplified NRG1 and NRG3 directly induced meiosis in spermatogonia. In addition, ATRA and 9-cis-RA activated spermatogonia directly and promoted their proliferation and eventually meiotic initiation.
Assuntos
Proliferação de Células , Meiose/fisiologia , Neurregulinas/metabolismo , Espermatogônias/fisiologia , Testículo/citologia , Animais , Benzoatos/farmacologia , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Hormônio Foliculoestimulante/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurregulinas/genética , Neurregulinas/farmacologia , Proteínas Oncogênicas v-erbB/genética , Proteínas Oncogênicas v-erbB/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogônias/citologia , Teratogênicos/farmacologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/fisiologia , Tetra-Hidronaftalenos/farmacologia , Técnicas de Cultura de Tecidos , Tretinoína/farmacologiaRESUMO
Aberrant signaling of the ErbB family of receptors plays an integral role in the tumorigenesis of many cancer types, including head and neck squamous cell carcinoma (HNSCC) and breast cancer (BC). Significant research efforts have focused on developing new treatments that target ErbB family members, with the last decade seeing the approval of small-molecule tyrosine kinase inhibitors and monoclonal antibodies that inhibit ErbB signaling. However, treatment resistance is an ever-growing problem and, therefore, new therapies are being investigated to overcome this hurdle. Afatinib is an irreversible ErbB family blocker that has demonstrated potent anti-tumor activity in preclinical models and has displayed clinical efficacy in patients with non-small-cell lung cancer, and activity in HNSCC and BC. Here, the preclinical and clinical development of afatinib in the treatment of non-small-cell lung cancer, HNSCC and BC is described in the context of currently approved agents.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Afatinib , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Proteínas Oncogênicas v-erbB/metabolismo , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Quinazolinas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We review the role of Neuregulin 3 (Nrg3) and Erbb receptor signalling in embryonic mammary gland development. Neuregulins are growth factors that bind and activate its cognate Erbb receptor tyrosine kinases, which form a signalling network with established roles in breast development and breast cancer. Studies have shown that Nrg3 expression profoundly impacts early stages of embryonic mammary development. Network analysis shows how Nrg/Erbb signals could integrate with other major regulators of embryonic mammary development to elicit the morphogenetic processes and cell fate decisions that occur as the mammary lineage is established.
Assuntos
Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/embriologia , Glândulas Mamárias Humanas/metabolismo , Neurregulinas/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurregulinas/genética , Proteínas Oncogênicas v-erbB/genética , Transdução de SinaisRESUMO
Our laboratory has previously shown that some gefitinib-insensitive head and neck squamous cell carcinoma (HNSCC) cell lines exhibit dominant autocrine fibroblast growth factor receptor (FGFR) signaling. Herein, we deployed a whole-genome loss-of-function screen to identify genes whose knockdown potentiated the inhibitory effect of the FGFR inhibitor, AZ8010, in HNSCC cell lines. Three HNSCC cell lines expressing a genome-wide small hairpin RNA (shRNA) library were treated with AZ8010 and the abundance of shRNA sequences was assessed by deep sequencing. Under-represented shRNAs in treated cells are expected to target genes important for survival with AZ8010 treatment. Synthetic lethal hits were validated with specific inhibitors and independent shRNAs. We found that multiple alternate receptors provided protection from FGFR inhibition, including receptor tyrosine kinases (RTKs), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), and hepatocyte growth factor receptor (MET). We showed that specific knockdown of either ERBB2 or MET in combination with FGFR inhibition led to increased inhibition of growth relative to FGFR tyrosine kinase inhibitor (TKI) treatment alone. These results were confirmed using specific small molecule inhibitors of either ERBB family members or MET. Moreover, the triple combination of FGFR, MET, and ERBB family inhibitors showed the largest inhibition of growth and induction of apoptosis compared with the double combinations. These results reveal a role for alternate RTKs in maintaining progrowth and survival signaling in HNSCC cells in the setting of FGFR inhibition. Thus, improved therapies for HNSCC patients could involve rationally designed combinations of TKIs targeting FGFR, ERBB family members, and MET.
Assuntos
Receptores ErbB/fisiologia , Neoplasias de Cabeça e Pescoço/patologia , Proteínas Oncogênicas v-erbB/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Receptor ErbB-2/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Receptores ErbB/antagonistas & inibidores , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptores Proteína Tirosina Quinases/fisiologia , Receptor ErbB-2/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidoresRESUMO
BACKGROUND: Chronic ß-adrenergic receptor (ß-AR) overstimulation, a hallmark of heart failure, is associated with increased cardiac expression of matrix metalloproteinases (MMPs). MMP-1 has been shown to cleave and activate the protease-activated receptor 1 (PAR1) in noncardiac cells. In the present study, we hypothesized that ß-AR stimulation would result in MMP-dependent PAR1 transactivation in cardiac cells. METHODS AND RESULTS: ß-AR stimulation of neonatal rat ventricular myocytes (NRVMs) or cardiac fibroblasts with isoproterenol transduced with an alkaline phosphatase-tagged PAR1 elicited a significant increase in alkaline phosphatase-PAR1 cleavage. This isoproterenol-dependent cleavage was significantly reduced by the broad-spectrum MMP inhibitor GM6001. Importantly, specific MMP-13 inhibitors also decreased alkaline phosphatase-PAR1 cleavage in isoproterenol-stimulated NRVMs, as well as in NRVMs stimulated with conditioned medium from isoproterenol-stimulated cardiac fibroblasts. Moreover, we found that recombinant MMP-13 stimulation cleaved alkaline phosphatase-PAR1 in NRVMs at DPRS(42)↓(43)FLLRN. This also led to the activation of the ERK1/2 pathway through Gαq in NRVMs and via the Gαq/ErbB receptor pathways in cardiac fibroblasts. MMP-13 elicited similar levels of ERK1/2 activation but lower levels of generation of inositol phosphates in comparison to thrombin. Finally, we demonstrated that either PAR1 genetic ablation or pharmacological inhibition of MMP-13 prevented isoproterenol-dependent cardiac dysfunction in mice. CONCLUSIONS: In this study, we demonstrate that ß-AR stimulation leads to MMP-13 transactivation of PAR1 in both cardiac fibroblasts and cardiomyocytes and that this likely contributes to pathological activation of Gαq and ErbB receptor-dependent pathways in the heart. We propose that this mechanism may underlie the development of ß-AR overstimulation-dependent cardiac dysfunction.
Assuntos
Metaloproteinase 13 da Matriz/fisiologia , Miócitos Cardíacos/metabolismo , Receptor PAR-1/metabolismo , Receptores Adrenérgicos beta/fisiologia , Ativação Transcricional , Animais , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Oncogênicas v-erbB/fisiologia , Transdução de SinaisRESUMO
In baseball parlance, a triple threat is a person who can run, hit and throw with aplomb. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a cell surface protein that antagonises ERBB receptor signalling by downregulating receptor levels. Over 10 years ago, Hedman et al postulated that LRIG1 might be a tumour suppressor. Recently, Powell et al provided in vivo evidence substantiating that claim by demonstrating that Lrig1 loss in mice leads to spontaneously arising, highly penetrant intestinal adenomas. Interestingly, Lrig1 also marks stem cells in the gut, suggesting a potential role for Lrig1 in maintaining intestinal epithelial homeostasis. In this review, we will discuss the ability of LRIG1 to act as a triple threat: pan-ERBB negative regulator, intestinal stem cell marker and tumour suppressor. We will summarise studies of LRIG1 expression in human cancers and discuss possible related roles for LRIG2 and LRIG3.
Assuntos
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neoplasias/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenoma/genética , Animais , Biomarcadores/metabolismo , Receptores ErbB/genética , Genes Supressores de Tumor , Humanos , Mucosa Intestinal/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Proteínas Oncogênicas v-erbB/metabolismo , Células-Tronco/citologia , Proteínas Supressoras de Tumor/genéticaRESUMO
The EphA2 receptor tyrosine kinase is frequently overexpressed in many cancers, including 40% of breast cancers. Here, we show that EphA2 is a direct transcriptional target of the Ras-Raf-MAPK pathway and that ligand-stimulated EphA2 attenuates the growth factor-induced activation of Ras. Thus, a negative feedback loop is created that regulates Ras activity. Interestingly, the expression of EphA2 and ephrin-A1 is mutually exclusive in a panel of 28 breast cancer cell lines. We show that the MAPK pathway inhibits ephrin-A1 expression, and the ligand expression inhibits EphA2 levels contributing to the receptor-ligand reciprocal expression pattern in these cell lines. Our results suggest that an escape from the negative effects of this interaction may be important in the development of cancer.
Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo , Receptor EphA2/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Efrina-A1/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Oncogênicas v-erbB/metabolismo , Receptor EphA2/genética , Transdução de Sinais , Transcrição Gênica , Quinases raf/metabolismoRESUMO
To define the genetic requirements for pancreatic ductal adenocarcinoma (PDA), we have targeted concomitant endogenous expression of Trp53(R172H) and Kras(G12D) to the mouse pancreas, revealing the cooperative development of invasive and widely metastatic carcinoma that recapitulates the human disease. The primary carcinomas and metastases demonstrate a high degree of genomic instability manifested by nonreciprocal translocations without obvious telomere erosion-hallmarks of human carcinomas not typically observed in mice. No mutations were discovered in other cardinal tumor suppressor gene pathways, which, together with previous results, suggests that there are distinct genetic pathways to PDA with different biological behaviors. These findings have clear implications for understanding mechanisms of disease pathogenesis, and for the development of detection and targeted treatment strategies.
Assuntos
Carcinoma Ductal Pancreático/patologia , Instabilidade Cromossômica/genética , Mutação de Sentido Incorreto , Proteína Supressora de Tumor p53/genética , Proteínas ras/genética , Animais , Caderinas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Centrossomo/patologia , Aberrações Cromossômicas , Análise Citogenética , Progressão da Doença , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Rearranjo Gênico/genética , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Mutantes , Camundongos Transgênicos , Metástase Neoplásica , Proteínas Oncogênicas v-erbB/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Análise de Sobrevida , Telômero/genética , Transativadores/genética , Translocação GenéticaRESUMO
Cell surface receptors play ubiquitous roles in cell signaling and communication and their expression levels are important biomarkers for many diseases. Expression levels are, however, only one factor that determines the physiological activity of a receptor. For some surface receptors, their distribution on the cell surface, especially their clustering, provides additional mechanisms for regulation. To access this spatial information robust assays are required that provide detailed insight into the organization of cell surface receptors on nanometer length scales. In this manuscript, we demonstrate through combination of scattering spectroscopy, electron microscopy, and generalized multiple particle Mie theory (GMT) simulations that the density- and morphology-dependent spectral response of Au nanoparticle (NP) immunolabels bound to the epidermal growth factor receptors ErbB1 and ErbB2 encodes quantitative information of both the cell surface expression and spatial clustering of the two receptors in different unliganded in vitro cancer cell lines (SKBR3, MCF7, A431). A systematic characterization of the collective spectral responses of NPs targeted at ErbB1 and ErbB2 at various NP concentrations indicates differences in the large-scale organization of ErbB1 and ErbB2 in cell lines that overexpress these receptors. Validation experiments in the scanning electron microscope (SEM) confirm that NPs targeted at ErbB1 on A431 are more strongly clustered than NPs bound to ErbB2 on SKBR3 or MCF7 at overall comparable NP surface densities. This finding is consistent with the existence of larger receptor clusters for ErbB1 than for ErbB2 in the plasma membranes of the respective cells.
Assuntos
Membrana Celular/metabolismo , Perfilação da Expressão Gênica/métodos , Ouro , Nanopartículas Metálicas , Neoplasias Experimentais/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Linhagem Celular Tumoral , Humanos , Técnicas de Sonda MolecularRESUMO
Members of the epidermal growth factor receptor (EGFR/ERBB) system are essential local regulators of mammary gland development and function. Emerging evidence suggests that EGFR signaling may also influence mammary gland activity indirectly by promoting the release of prolactin from the pituitary gland in a MAPK and estrogen receptor-α (ERα)-dependent manner. Here, we report that overexpression of the EGFR ligand betacellulin (BTC) causes a lactating-like phenotype in the mammary gland of virgin female mice including the major hallmarks of lactogenesis. BTC transgenic (BTC-tg) females showed reduced levels of prolactin in the pituitary gland and increased levels of the hormone in the circulation. Furthermore, treatment of BTC-tg females with bromocriptine, an inhibitor of prolactin secretion, blocked the development of the lactation-like phenotype, suggesting that it is caused by central release of prolactin rather than by local actions of BTC in the mammary gland. Introduction of the antimorphic Egfr allele Wa5 also blocked the appearance of the mammary gland alterations, revealing that the phenotype is EGFR-dependent. We detected an increase in MAPK activity, but unchanged phosphorylation of ERα in the pituitary gland of BTC-tg females as compared with control mice. These results provide the first functional evidence in vivo for a role of the EGFR system in regulating mammary gland activity by modulating prolactin release from the pituitary gland.