Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7867): 404-408, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163073

RESUMO

Congenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.


Assuntos
Proteínas Musculares/genética , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Envelhecimento , Agrina/genética , Agrina/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Camundongos , Terapia de Alvo Molecular , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Síndromes Miastênicas Congênitas/imunologia , Fosforilação , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Recidiva , Sinapses/metabolismo
2.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683131

RESUMO

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Células Eritroides , Hemina , Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Proteínas Proto-Oncogênicas c-crk , Humanos , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/efeitos dos fármacos , Células Eritroides/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/patologia , Células Eritroides/citologia , Eritropoese/genética , Eritropoese/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Proto-Oncogênicas c-crk/genética
3.
Hum Mol Genet ; 31(8): 1197-1215, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686881

RESUMO

CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remain unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.


Assuntos
Cardiopatias Congênitas , Crista Neural , Animais , Diferenciação Celular/genética , Cardiopatias Congênitas/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Crista Neural/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais/genética
4.
Genomics ; 115(3): 110634, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121446

RESUMO

CRKL (CRK Like Proto-Oncogene) belongs to the Crk family and is a 39-kDa adapter protein that encodes SH2 and SH3 (src homologs) domains. To identify its oncogenic role in malignant melanoma, we investigated the association between CRKL and mutation, prognosis, tumor mutation burden, immune cell infiltration of melanoma, and explored the associations between CRKL and immunotherapy response. Our results showed that abnormal CRKL expression is associated with poor prognosis in melanoma and is significantly correlated with immune-activated pathways and processes, immune cell infiltrations, and expression of immunoregulators. Importantly, we found that CRKL expression is a predictive biomarker for anti-PD1 therapy response in melanoma patients. Furthermore, inhibiting CRKL expression in melanoma cell lines suppressed their proliferation and metastasis, as well as activated the pyroptosis-related pathway. Our study provides potential mechanisms of melanoma pathogenesis, which may suggest new avenues for targeted therapy in this disease.


Assuntos
Melanoma , Proteínas Nucleares , Humanos , Biomarcadores , Imunoterapia , Proteínas Nucleares/genética , Prognóstico , Proteínas Proto-Oncogênicas c-crk/metabolismo
5.
Cell Commun Signal ; 21(1): 30, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737758

RESUMO

BACKGROUND: C3G is a guanine nucleotide exchange factor (GEF) that activates Rap1 to promote cell adhesion. Resting C3G is autoinhibited and the GEF activity is released by stimuli that signal through tyrosine kinases. C3G is activated by tyrosine phosphorylation and interaction with Crk adaptor proteins, whose expression is elevated in multiple human cancers. However, the molecular details of C3G activation and the interplay between phosphorylation and Crk interaction are poorly understood. METHODS: We combined biochemical, biophysical, and cell biology approaches to elucidate the mechanisms of C3G activation. Binding of Crk adaptor proteins to four proline-rich motifs (P1 to P4) in C3G was characterized in vitro using isothermal titration calorimetry and sedimentation velocity, and in Jurkat and HEK293T cells by affinity pull-down assays. The nucleotide exchange activity of C3G over Rap1 was measured using nucleotide-dissociation kinetic assays. Jurkat cells were also used to analyze C3G translocation to the plasma membrane and the C3G-dependent activation of Rap1 upon ligation of T cell receptors. RESULTS: CrkL interacts through its SH3N domain with sites P1 and P2 of inactive C3G in vitro and in Jurkat and HEK293T cells, and these sites are necessary to recruit C3G to the plasma membrane. However, direct stimulation of the GEF activity requires binding of Crk proteins to the P3 and P4 sites. P3 is occluded in resting C3G and is essential for activation, while P4 contributes secondarily towards complete stimulation. Tyrosine phosphorylation of C3G alone causes marginal activation. Instead, phosphorylation primes C3G lowering the concentration of Crk proteins required for activation and increasing the maximum activity. Unexpectedly, optimal activation also requires the interaction of CrkL-SH2 domain with phosphorylated C3G. CONCLUSION: Our study revealed that phosphorylation of C3G by Src and Crk-binding form a two-factor mechanism that ensures tight control of C3G activation. Additionally, the simultaneous SH2 and SH3N interaction of CrkL with C3G, required for the activation, reveals a novel adaptor-independent function of Crk proteins relevant to understanding their role in physiological signaling and their deregulation in diseases. Video abstract.


Assuntos
Fator 2 de Liberação do Nucleotídeo Guanina , Proteínas Nucleares , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo , Células HEK293 , Proteínas Nucleares/metabolismo , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Domínios de Homologia de src , Tirosina/metabolismo
6.
J Biol Chem ; 296: 100390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561443

RESUMO

The expression levels of CT10 regulator of kinase (Crk) and Crk-like (CrkL) are elevated in many human cancers, including glioblastoma (GBM), and are believed to contribute to poor prognosis. Although Crk and CrkL have been proposed as therapeutic targets in these tumors, the lack of a reliable, quantitative assay to measure Crk and CrkL activity has hindered development of inhibitors. Here, we knocked down Crk, CrkL, or both using siRNAs in a human GBM cell line, U-118MG, to determine the respective, quantitative contributions of Crk and CrkL to cellular phenotypes. The combined use of specific and potent Crk and CrkL siRNAs induced effective knockdown of CrkII, CrkI, and CrkL. Whereas Crk knockdown did not affect cell morphology, proliferation, adhesion, or invasion, CrkL knockdown caused shrinkage of cells and inhibition of cell proliferation, adhesion, and invasion. Crk/CrkL double knockdown resulted in more pronounced morphological alterations and more robust inhibition of proliferation, adhesion, and invasion. Furthermore, Crk/CrkL double knockdown completely blocked cell migration, and this effect was rescued by transient overexpression of CrkL but not of Crk. Quantification of protein levels indicated that CrkL is expressed more abundantly than CrkII and CrkI in U-118MG cells. These results demonstrate both the predominant role of CrkL and the essential overlapping functions of Crk and CrkL in U-118MG cells. Furthermore, our study indicates that migration of U-118MG cells depends entirely on Crk and CrkL. Thus, impedance-based, real-time measurement of tumor cell migration represents a robust assay for monitoring Crk and CrkL activities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Técnicas In Vitro , Fenótipo , Proteínas Proto-Oncogênicas c-crk/genética
7.
Urol Int ; 106(10): 1075-1087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34518485

RESUMO

PURPOSE: Compelling evidence has unveiled the importance of long noncoding RNAs (lncRNAs) in malignant behavior of Wilms' tumor (WT). Hereon, we intend to assess the function and associated molecular mechanism of lncRNA maternally expressed gene 8 (MEG8) in WT cells. METHODS: Expression levels of MEG8, miR-23a-3p, and CT10 regulator of kinase (CRK) were determined by quantitative real-time polymerase chain reaction. Cell viability was assessed by MTT assay. Besides, wound healing assay and transwell assay were applied to examine abilities of cell migration and invasion, respectively. Dual-luciferase reporter assay was employed to test the interplay among MEG8, miR-23a-3p, and CRK. Western blot was used to detect relative protein expression of CRK. RESULTS: MEG8 and CRK expression was elevated, while miR-23a-3p expression was decreased in WT tissues and cells. The histologic type, lymphatic metastasis, and National Wilms Tumor Study (NWTS) stage were associated with the expression of MEG8, miR-23a-3p, and CRK in WT patients. MEG8 knockdown or miR-23a-3p overexpression restrained WT cells in cell viability, migration, and invasiveness in vitro. As to mechanism exploration, MEG8 could directly bind to miR-23a-3p and then miR-23a-3p targeted CRK. MEG8 was inversely correlated with miR-23a-3p and positively correlated with CRK in WT tissues. Meantime, miR-23a-3p was inversely correlated with CRK in WT tissues. Additionally, MEG8 knockdown-mediated suppressive impacts on cell viability, migration, and invasiveness were reversed by overexpression of CRK or repression of miR-23a-3p in WT cells. CONCLUSIONS: The cell viability, migration, and invasiveness of WT cells were repressed by MEG8 knockdown via targeting the miR-23a-3p/CRK axis.


Assuntos
Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Tumor de Wilms , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-crk/genética , Proteínas Proto-Oncogênicas c-crk/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tumor de Wilms/genética
8.
Proc Natl Acad Sci U S A ; 116(31): 15495-15504, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311869

RESUMO

Members of the New Kinase Family 3 (NKF3), PEAK1/SgK269 and Pragmin/SgK223 pseudokinases, have emerged as important regulators of cell motility and cancer progression. Here, we demonstrate that C19orf35 (PEAK3), a newly identified member of the NKF3 family, is a kinase-like protein evolutionarily conserved across mammals and birds and a regulator of cell motility. In contrast to its family members, which promote cell elongation when overexpressed in cells, PEAK3 overexpression does not have an elongating effect on cell shape but instead is associated with loss of actin filaments. Through an unbiased search for PEAK3 binding partners, we identified several regulators of cell motility, including the adaptor protein CrkII. We show that by binding to CrkII, PEAK3 prevents the formation of CrkII-dependent membrane ruffling. This function of PEAK3 is reliant upon its dimerization, which is mediated through a split helical dimerization domain conserved among all NKF3 family members. Disruption of the conserved DFG motif in the PEAK3 pseudokinase domain also interferes with its ability to dimerize and subsequently bind CrkII, suggesting that the conformation of the pseudokinase domain might play an important role in PEAK3 signaling. Hence, our data identify PEAK3 as an NKF3 family member with a unique role in cell motility driven by dimerization of its pseudokinase domain.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Multimerização Proteica , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Forma Celular , Chlorocebus aethiops , Sequência Conservada , Proteínas do Citoesqueleto/química , Evolução Molecular , Células HEK293 , Humanos , Filogenia , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Tirosina Quinases/química
9.
Ann Hum Genet ; 85(2): 92-96, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33026665

RESUMO

OBJECTIVE: To assess the experience on prenatal diagnosis of Miller-Dieker syndrome (MDS) to further delineate the fetal presentation of this syndrome. METHODS: This was a retrospective study. Fetal MDS was diagnosed prenatally by chromosomal microarray (CMA). Clinical data were reviewed for these cases, including maternal characteristics, indications for prenatal diagnosis, sonographic findings, CMA results, and pregnancy outcomes. RESULTS: Four cases were diagnosis as MDS by CMA. The most common sonographic features were ventriculomegaly (3/4) and polyhydramnios (2/4). Deletion sizes ranged from 1.5 to 5.4 Mb. All microdeletions were located at the MDS critical region and showed haploinsufficiency of the YWHAE, CRK, and PAFAH1B1. All patients chose to terminate the pregnancy. Parental chromosome analysis were preformed in three cases and demonstrated that two cases were de novo and one case was caused by inherited derivative chromosomes from parental balanced translocations. CONCLUSION: The most common prenatal ultrasound findings of MDS were ventriculomegaly and polyhydramnios. CMA can improve diagnostic precision for detecting MDS.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Proteínas 14-3-3/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico , Proteínas Associadas aos Microtúbulos/genética , Diagnóstico Pré-Natal , Proteínas Proto-Oncogênicas c-crk/genética , Adulto , Cromossomos/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Feminino , Haploinsuficiência/genética , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Hidrocefalia/patologia , Análise em Microsséries , Poli-Hidrâmnios/diagnóstico , Poli-Hidrâmnios/diagnóstico por imagem , Poli-Hidrâmnios/genética , Poli-Hidrâmnios/patologia , Gravidez , Ultrassonografia , Adulto Jovem
10.
Cell Microbiol ; 22(5): e13159, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31909863

RESUMO

Trypanosomatids are divergent eukaryotes of high medical and economical relevance. Their biology exhibits original features that remain poorly understood; particularly, Leishmania is known for its high degree of genomic plasticity that makes genomic manipulation challenging. CRISPR-Cas9 has been applied successfully to these parasites providing a robust tool to study non-essential gene functions. Here, we have developed a versatile inducible system combining Di-Cre recombinase and CRISPR-Cas9 advantages. Cas9 is used to integrate the LoxP sequences, and the Cre-recombinase catalyses the recombination between LoxP sites, thereby excising the target gene. We used a Leishmania mexicana cell line expressing Di-Cre, Cas9, and T7 polymerase and then transfected donor DNAs and single guide RNAs as polymerase chain reaction (PCR) products. Because the location of LoxP sequences in the genomic DNA can interfere with the function and localisation of certain proteins of interest, we proposed to target the least transcribed regions upstream and/or downstream the gene of interest. To do so, we developed "universal" template plasmids for donor DNA cassettes with or without a tag, where LoxP sequences may be located either immediately upstream the ATG and downstream the stop codon of the gene of interest, or in the least transcribed areas of intergenic regions. Our methodology is fast, PCR-based (molecular cloning-free), highly efficient, versatile, and able to overcome the problems posed by genomic plasticity in Leishmania.


Assuntos
Técnicas de Inativação de Genes/métodos , Leishmania/genética , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Integrases , Proteínas Proto-Oncogênicas c-crk/genética , Recombinação Genética , Transfecção
11.
Immunity ; 36(4): 600-11, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22464172

RESUMO

Natural killer (NK) cell inhibitory receptors recruit tyrosine phosphatases to prevent activation, induce phosphorylation and dissociation of the small adaptor Crk from cytoskeleton scaffold complexes, and maintain NK cells in a state of responsiveness to subsequent activation events. How Crk contributes to inhibition is unknown. We imaged primary NK cells over lipid bilayers carrying IgG1 Fc to stimulate CD16 and human leukocyte antigen (HLA)-E to inhibit through receptor CD94-NKG2A. HLA-E alone induced Crk phosphorylation in NKG2A(+) NK cells. At activating synapses with Fc alone, Crk was required for the movement of Fc microclusters and their ability to trigger activation signals. At inhibitory synapses, HLA-E promoted central accumulation of both Fc and phosphorylated Crk and blocked the Fc-induced buildup of F-actin. We propose a unified model for inhibitory receptor function: Crk phosphorylation prevents essential Crk-dependent activation signals and blocks F-actin network formation, thereby reducing constraints on subsequent engagement of activation receptors.


Assuntos
Actinas/metabolismo , Células Matadoras Naturais/imunologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Células Cultivadas , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Células Matadoras Naturais/metabolismo , Bicamadas Lipídicas , Ativação Linfocitária , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-crk/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Receptores de Células Matadoras Naturais , Antígenos HLA-E
12.
Exp Cell Res ; 394(1): 112135, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32535035

RESUMO

Podocytes are actin-rich epithelial cells whose effacement and detachment are the main cause of glomerular disease. Crk family proteins: Crk1/2 and CrkL are reported to be important intracellular signaling proteins that are involved in many biological processes. However, the roles of them in maintaining podocyte morphology and function remain poorly understood. In this study, specific knocking down of Crk1/2 and CrkL in podocytes caused abnormal cell morphology, actin cytoskeleton rearrangement and dysfunction in cell adhesion, spreading, migration, and viability. The p130Cas, focal adhesion kinase, phosphatidylinositol 3-kinase/Akt, p38 and JNK signaling pathways involved in these alterations. Furthermore, knocking down CrkL alone conferred a more modest phenotype than did the Crk1/2 knockdown and the double knockdown. Kidney biopsy specimens from patients with focal segmental glomerulosclerosis and minimal change nephropathy showed downregulation of Crk1/2 and CrkL in glomeruli. In zebrafish embryos, Crk1/2 and CrkL knockdown compromised the morphology and caused abnormal glomerular development. Thus, our results suggest that Crk1/2 and CrkL expression are important in podocytes; loss of either will cause podocyte dysfunction, leading to foot process effacement and podocyte detachment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Citoesqueleto de Actina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo
13.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494310

RESUMO

Calcium-dependent protein kinase (CDPK or CPK) and CDPK-related kinase (CRK) play an important role in plant growth, development, and adaptation to environmental stresses. However, their gene families had been yet inadequately investigated in Medicago truncatula. In this study, six MtCRK genes were computationally identified, they were classified into five groups with MtCDPKs based on phylogenetic relationships. Six pairs of segmental duplications were observed in MtCDPK and MtCRK genes and the Ka/Ks ratio, an indicator of selection pressure, was below 0.310, indicating that these gene pairs underwent strong purifying selection. Cis-acting elements of morphogenesis, multiple hormone responses, and abiotic stresses were predicted in the promoter region. The spatial expression of MtCDPKs and MtCRKs displays diversity. The expression of MtCDPKs and MtCRKs could be regulated by various stresses. MtCDPK4, 14, 16, 22, and MtCRK6 harbor both N-myristoylation site and palmitoylation site and were anchored on plasma membrane, while MtCDPK7, 9, and 15 contain no or only one N-acylation site and were distributed in cytosol and nucleus, suggesting that the N-terminal acylation sites play a key role in subcellular localization of MtCDPKs and MtCRKs. In summary, comprehensive characterization of MtCDPKs and MtCRKs provide a subset of candidate genes for further functional analysis and genetic improvement against drought, cold, salt and biotic stress.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Medicago truncatula/genética , Família Multigênica , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-crk/genética , Mapeamento Cromossômico , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Medicago truncatula/classificação , Filogenia , Regiões Promotoras Genéticas
14.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830297

RESUMO

During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.


Assuntos
Citoesqueleto de Actina/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Transdução de Sinais/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Polaridade Celular/genética , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Interferência de RNA , Receptores de Complemento/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
15.
Biophys J ; 118(10): 2502-2512, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32311315

RESUMO

Proline-rich motifs (PRMs) are widely used for mediating protein-protein interactions with weak binding affinities. Because they are intrinsically disordered when unbound, conformational entropy plays a significant role for the binding. However, residue-level differences of the entropic contribution in the binding of different ligands remain not well understood. We use all-atom molecular dynamics simulation and the maximal information spanning tree formalism to analyze conformational entropy associated with the binding of two PRMs, one from the Abl kinase and the other from the nonstructural protein 1 of the 1918 Spanish influenza A virus, to the N-terminal SH3 (nSH3) domain of the CrkII protein. Side chains of the stably folded nSH3 experience more entropy change upon ligand binding than the backbone, whereas PRMs involve comparable but heterogeneous entropy changes among the backbone and side chains. In nSH3, two conserved nonpolar residues forming contacts with the PRM experience the largest side-chain entropy loss. In contrast, the C-terminal charged residues of PRMs that form polar contacts with nSH3 experience the greatest side-chain entropy loss, although their "fuzzy" nature is attributable to the backbone that remains relatively flexible. Thus, residues that form high-occupancy contacts between nSH3 and PRM do not reciprocally contribute to entropy loss. Furthermore, certain surface residues of nSH3 distal to the interface with PRMs gain entropy, indicating a nonlocal effect of ligand binding. Comparing between the PRMs from cAbl and nonstructural protein 1, the latter involves a larger side-chain entropy loss and forms more contacts with nSH3. Consistent with experiments, this indicates stronger binding of the viral ligand at the expense of losing the flexibility of side chains, whereas the backbone experiences less entropy loss. The entropy "hotspots" as identified in this study will be important for tuning the binding affinity of various ligands to a receptor.


Assuntos
Influenza Humana , Entropia , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-crk/metabolismo
16.
Int J Cancer ; 147(6): 1715-1731, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32147820

RESUMO

Epithelial-mesenchymal transition (EMT) is a cell plasticity process required for metastasis and chemoresistance of carcinoma cells. We report a crucial role of the signal adaptor proteins CRK and CRKL in promoting EMT and tumor aggressiveness, as well as resistance against chemotherapy in colorectal and pancreatic carcinoma. Genetic loss of either CRKL or CRK partially counteracted EMT in three independent cancer cell lines. Strikingly, complete loss of the CRK family shifted cells strongly toward the epithelial phenotype. Cells exhibited greatly increased E-cadherin and grew as large, densely packed clusters, completely lacked invasiveness and the ability to undergo EMT induced by cytokines or genetic activation of SRC. Furthermore, CRK family-deficiency significantly reduced cell survival, proliferation and chemoresistance, as well as ERK1/2 phosphorylation and c-MYC protein levels. In accordance, MYC-target gene expression was identified as novel hallmark process positively regulated by CRK family proteins. Mechanistically, CRK proteins were identified as pivotal amplifiers of SRC/FAK signaling at focal adhesions, mediated through a novel positive feedback loop depending on RAP1. Expression of the CRK family and the EMT regulator ZEB1 was significantly correlated in samples from colorectal cancer patients, especially in invasive regions. Further, high expression of CRK family genes was significantly associated with reduced survival in locally advanced colorectal cancer, as well as in pan-cancer datasets from the TCGA project. Thus, CRK family adaptor proteins are promising therapeutic targets to counteract EMT, chemoresistance, metastasis formation and minimal residual disease. As proof of concept, CRK family-mediated oncogenic signaling was successfully inhibited by a peptide-based inhibitor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Idoso , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/terapia , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/patologia , Humanos , Masculino , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-crk/antagonistas & inibidores , RNA-Seq , Reto/patologia , Reto/cirurgia , Transdução de Sinais/efeitos dos fármacos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Quinases da Família src/metabolismo
17.
Biochem Biophys Res Commun ; 529(3): 603-607, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736680

RESUMO

The Crk and CrkL adaptor proteins have SH2 and SH3 domains and play essential overlapping, as well as distinct, roles in many biological processes, ranging from cell structure and motility to proliferation. Conditional ablation of both Crk and CrkL in neuronal progenitor cells, using a Nestin-Cre transgene, resulted in severe defects in postnatal eye development, including progressive eye closure, lens rupture, and retinal malformation. These phenotypes were not observed in the presence of a single wild-type allele of either Crk or CrkL. We found that the lens in knockout mice started to rupture and disintegrate between postnatal days 7 and 12, although the structure of the retina was relatively well maintained. As the lens deteriorated further, the outer nuclear layer in the posterior of the retina enlarged and developed ruffles. Cre recombination occurred in the lens and retina of the knockout mice. Furthermore, the posterior lens capsule of the knockout mouse was thinner at postnatal days 0.5 and 3, suggesting that the defective lens capsule caused rupturing of the lens near the posterior pole. These results indicate that Crk and CrkL play essential overlapping roles in postnatal lens development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cápsula do Cristalino/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cápsula do Cristalino/crescimento & desenvolvimento , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-crk/genética , Fatores de Tempo
18.
Biochem Biophys Res Commun ; 524(2): 378-384, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32005519

RESUMO

Signaling adaptor protein Crk has been shown to play an important role in various human cancers. Crk links tyrosine kinases and guanine nucleotide exchange factors (GEFs) such as C3G and Dock180 to activate small G-proteins Rap and Rac, respectively. In pancreatic cancer, various molecular targeted therapies have provided no significant therapeutic benefit for the patients so far due to constitutive activation of KRAS by frequent KRAS mutation. Therefore, the establishment of novel molecular targeted therapy in KRAS-independent manner is required. Here, we investigated a potential of Crk as a therapeutic target in pancreatic cancer. Immunohistochemistry on human pancreatic cancer specimens revealed that the patients with high expression of Crk had a worse prognosis than those with low expression. We established Crk-knockdown pancreatic cancer cells by siRNA using PANC-1, AsPC-1, and MIA PaCa-2 cells, which showed decreased cell proliferation, invasion, and adhesion. In Crk-knockdown pancreatic cancer cells, the decrease of c-Met phosphorylation was observed. In the orthotopic xenograft model, Crk depletion prolonged survival of mice significantly. Thus, signaling adaptor protein Crk is involved in malignant potential of pancreatic cancer associated with decrease of c-Met phosphorylation, and Crk can be considered to be a potential therapeutic molecular target.


Assuntos
Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Camundongos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-crk/análise , Proteínas Proto-Oncogênicas c-met/análise
19.
J Immunol ; 200(10): 3420-3428, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618525

RESUMO

Natural killer cells are critical in the immune response to infection and malignancy. Prior studies have demonstrated that Crk family proteins can influence cell apoptosis, proliferation, and cell transformation. In this study, we investigated the role of Crk family proteins in mouse NK cell differentiation and host defense using a mouse CMV infection model. The number of NK cells, maturational state, and the majority of the NKR repertoire was similar in Crk x Crk-like (CrkL)-double-deficient and wild type NK cells. However, Crk family proteins were required for optimal activation, IFN-γ production, expansion, and differentiation of Ly49H+ NK cells, as well as host defense during mouse CMV infection. The diminished function of Crk x CrkL-double-deficient NK cells correlated with decreased phosphorylation of STAT4 and STAT1 in response to IL-12 and IFN-α stimulation, respectively. Together, our findings analyzing NK cell-specific Crk-deficient mice provide insights into the role of Crk family proteins in NK cell function and host defense.


Assuntos
Diferenciação Celular/fisiologia , Infecções por Citomegalovirus/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Muromegalovirus/imunologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Animais , Diferenciação Celular/imunologia , Proliferação de Células/fisiologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Interferon-alfa/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT4/metabolismo , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
20.
Neurol Sci ; 41(8): 2259-2262, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32323081

RESUMO

INTRODUCTION: The short arm of chromosome 17 is characterized by a high density of low copy repeats, creating the opportunity for non-allelic homologous recombination to occur. Microdeletions of the 17p13.3 region are responsible for neuronal migration disorders including isolated lissencephaly sequence and Miller-Dieker syndrome. CASE REPORT: We describe the case of a 4-year and 2-month-old female with peculiar somatic traits and neurodevelopmental delay. At the age of 6 months, she started to present with infantile spasms syndrome; therefore, we administered vigabatrin followed by two cycles of adrenocorticotropic hormone, with good response. The coexistence of epileptic activity, neuropsychological delay, brain imaging abnormalities, and peculiar somatic features oriented us towards the hypothesis of a genetic etiology that could explain her clinical picture. Array CGH identified a 730 Kb deletion in the p13.3 region of the short arm of chromosome 17 including eleven genes, among these are YWHAE and CRK. DISCUSSION: Microdeletions of the 17p13.3 region involving only YWHAE and CRK, sparing PAFAH1B1, result in neurodevelopmental delay, growth retardation, craniofacial dysmorphisms, and mild structural brain abnormalities. Differently from the previously described patients carrying YWHAE and CRK deletions, the main complaint of our patient was represented by seizures. The absence of clear neuronal migration defects and mutations of the PAFAH1B1 gene in our patient underlines the central role of additional genes located in the 17p13.3 chromosomal region in the pathogenesis of epilepsy and helps to expand the phenotype of 17p13.3 microdeletion syndrome.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Malformações do Sistema Nervoso , 1-Alquil-2-acetilglicerofosfocolina Esterase , Proteínas 14-3-3/genética , Deleção Cromossômica , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Feminino , Humanos , Lactente , Fenótipo , Proteínas Proto-Oncogênicas c-crk/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA