Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.546
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(7): 800-812, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504697

RESUMO

An imbalance in the lineages of immunosuppressive regulatory T cells (Treg cells) and the inflammatory TH17 subset of helper T cells leads to the development of autoimmune and/or inflammatory disease. Here we found that TAZ, a coactivator of TEAD transcription factors of Hippo signaling, was expressed under TH17 cell-inducing conditions and was required for TH17 differentiation and TH17 cell-mediated inflammatory diseases. TAZ was a critical co-activator of the TH17-defining transcription factor RORγt. In addition, TAZ attenuated Treg cell development by decreasing acetylation of the Treg cell master regulator Foxp3 mediated by the histone acetyltransferase Tip60, which targeted Foxp3 for proteasomal degradation. In contrast, under Treg cell-skewing conditions, TEAD1 expression and sequestration of TAZ from the transcription factors RORγt and Foxp3 promoted Treg cell differentiation. Furthermore, deficiency in TAZ or overexpression of TEAD1 induced Treg cell differentiation, whereas expression of a transgene encoding TAZ or activation of TAZ directed TH17 cell differentiation. Our results demonstrate a pivotal role for TAZ in regulating the differentiation of Treg cells and TH17 cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Diferenciação Celular/imunologia , Colite/imunologia , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Artrite Reumatoide/imunologia , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Immunoblotting , Lisina Acetiltransferase 5 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Síndrome de Sjogren/imunologia , Proteínas Smad/imunologia , Proteínas Smad/metabolismo , Fatores de Transcrição de Domínio TEA , Transativadores/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
2.
Cell ; 155(5): 1104-18, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24238962

RESUMO

Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-ß/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence.


Assuntos
Senescência Celular , Desenvolvimento Embrionário , Saco Endolinfático/embriologia , Mesonefro/embriologia , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Saco Endolinfático/citologia , Feminino , Humanos , Rim/embriologia , Masculino , Mesonefro/citologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
PLoS Biol ; 21(1): e3001978, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689563

RESUMO

Chitin is a highly abundant polymer in nature and a principal component of apical extracellular matrices in insects. In addition, chitin has proved to be an excellent biomaterial with multiple applications. In spite of its importance, the molecular mechanisms of chitin biosynthesis and chitin structural diversity are not fully elucidated yet. To investigate these issues, we use Drosophila as a model. We previously showed that chitin deposition in ectodermal tissues requires the concomitant activities of the chitin synthase enzyme Kkv and the functionally interchangeable proteins Exp and Reb. Exp/Reb are conserved proteins, but their mechanism of activity during chitin deposition has not been elucidated yet. Here, we carry out a cellular and molecular analysis of chitin deposition, and we show that chitin polymerisation and chitin translocation to the extracellular space are uncoupled. We find that Kkv activity in chitin translocation, but not in polymerisation, requires the activity of Exp/Reb, and in particular of its conserved Nα-MH2 domain. The activity of Kkv in chitin polymerisation and translocation correlate with Kkv subcellular localisation, and in absence of Kkv-mediated extracellular chitin deposition, chitin accumulates intracellularly as membrane-less punctae. Unexpectedly, we find that although Kkv and Exp/Reb display largely complementary patterns at the apical domain, Exp/Reb activity nonetheless regulates the topological distribution of Kkv at the apical membrane. We propose a model in which Exp/Reb regulate the organisation of Kkv complexes at the apical membrane, which, in turn, regulates the function of Kkv in extracellular chitin translocation.


Assuntos
Quitina , Proteínas de Drosophila , Drosophila , Proteínas Smad , Animais , Quitina/química , Quitina/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação , Proteínas Smad/metabolismo
5.
Cell ; 147(7): 1511-24, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196728

RESUMO

Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-ß signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1γ, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.


Assuntos
Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Proteínas Smad/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteína Goosecoid/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência
6.
Nature ; 577(7791): 566-571, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915377

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) are phenotypic plasticity processes that confer migratory and invasive properties to epithelial cells during development, wound-healing, fibrosis and cancer1-4. EMTs are driven by SNAIL, ZEB and TWIST transcription factors5,6 together with microRNAs that balance this regulatory network7,8. Transforming growth factor ß (TGF-ß) is a potent inducer of developmental and fibrogenic EMTs4,9,10. Aberrant TGF-ß signalling and EMT are implicated in the pathogenesis of renal fibrosis, alcoholic liver disease, non-alcoholic steatohepatitis, pulmonary fibrosis and cancer4,11. TGF-ß depends on RAS and mitogen-activated protein kinase (MAPK) pathway inputs for the induction of EMTs12-19. Here we show how these signals coordinately trigger EMTs and integrate them with broader pathophysiological processes. We identify RAS-responsive element binding protein 1 (RREB1), a RAS transcriptional effector20,21, as a key partner of TGF-ß-activated SMAD transcription factors in EMT. MAPK-activated RREB1 recruits TGF-ß-activated SMAD factors to SNAIL. Context-dependent chromatin accessibility dictates the ability of RREB1 and SMAD to activate additional genes that determine the nature of the resulting EMT. In carcinoma cells, TGF-ß-SMAD and RREB1 directly drive expression of SNAIL and fibrogenic factors stimulating myofibroblasts, promoting intratumoral fibrosis and supporting tumour growth. In mouse epiblast progenitors, Nodal-SMAD and RREB1 combine to induce expression of SNAIL and mesendoderm-differentiation genes that drive gastrulation. Thus, RREB1 provides a molecular link between RAS and TGF-ß pathways for coordinated induction of developmental and fibrogenic EMTs. These insights increase our understanding of the regulation of epithelial plasticity and its pathophysiological consequences in development, fibrosis and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fibrose/patologia , Gastrulação , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/enzimologia , Organoides/metabolismo , Organoides/patologia , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/farmacologia
7.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
8.
PLoS Comput Biol ; 20(5): e1012072, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753874

RESUMO

Cells use signaling pathways to sense and respond to their environments. The transforming growth factor-ß (TGF-ß) pathway produces context-specific responses. Here, we combined modeling and experimental analysis to study the dependence of the output of the TGF-ß pathway on the abundance of signaling molecules in the pathway. We showed that the TGF-ß pathway processes the variation of TGF-ß receptor abundance using Liebig's law of the minimum, meaning that the output-modifying factor is the signaling protein that is most limited, to determine signaling responses across cell types and in single cells. We found that the abundance of either the type I (TGFBR1) or type II (TGFBR2) TGF-ß receptor determined the responses of cancer cell lines, such that the receptor with relatively low abundance dictates the response. Furthermore, nuclear SMAD2 signaling correlated with the abundance of TGF-ß receptor in single cells depending on the relative expression levels of TGFBR1 and TGFBR2. A similar control principle could govern the heterogeneity of signaling responses in other signaling pathways.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/metabolismo , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Proteína Smad2/metabolismo , Biologia Computacional , Modelos Biológicos , Linhagem Celular Tumoral , Proteínas Smad/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(11): e2121609119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259016

RESUMO

SignificanceNeurodegenerative diseases are poorly understood and difficult to treat. One common hallmark is lysosomal dysfunction leading to the accumulation of aggregates and other undegradable materials, which cause damage to brain resident cells. Lysosomes are acidic organelles responsible for breaking down biomolecules and recycling their constitutive parts. In this work, we find that the antiinflammatory and neuroprotective compound, discovered via a phenotypic screen, imparts its beneficial effects by targeting the lysosome and restoring its function. This is established using a genome-wide CRISPRi target identification screen and then confirmed using a variety of lysosome-targeted studies. The resulting small molecule from this study represents a potential treatment for neurodegenerative diseases as well as a research tool for the study of lysosomes in disease.


Assuntos
Anti-Inflamatórios/farmacologia , Lisossomos/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Animais , Anti-Inflamatórios/química , Biomarcadores , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Perfilação da Expressão Gênica , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Smad/agonistas
10.
Genes Dev ; 31(22): 2250-2263, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29269485

RESUMO

Activin/SMAD signaling in human embryonic stem cells (hESCs) ensures NANOG expression and stem cell pluripotency. In the presence of Wnt ligand, the Activin/SMAD transcription network switches to cooperate with Wnt/ß-catenin and induce mesendodermal (ME) differentiation genes. We show here that the Hippo effector YAP binds to the WNT3 gene enhancer and prevents the gene from being induced by Activin in proliferating hESCs. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) data show that YAP impairs SMAD recruitment and the accumulation of P-TEFb-associated RNA polymerase II (RNAPII) C-terminal domain (CTD)-Ser7 phosphorylation at the WNT3 gene. CRISPR/CAS9 knockout of YAP in hESCs enables Activin to induce Wnt3 expression and stabilize ß-catenin, which then synergizes with Activin-induced SMADs to activate a subset of ME genes that is required to form cardiac mesoderm. Interestingly, exposure of YAP-/- hESCs to Activin induces cardiac mesoderm markers (BAF60c and HAND1) without activating Wnt-dependent cardiac inhibitor genes (CDX2 and MSX1). Moreover, canonical Wnt target genes are up-regulated only modestly, if at all, under these conditions. Consequently, YAP-null hESCs exposed to Activin differentiate precisely into beating cardiomyocytes without further treatment. We conclude that YAP maintains hESC pluripotency by preventing WNT3 expression in response to Activin, thereby blocking a direct route to embryonic cardiac mesoderm formation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Proteína Wnt3/genética , Ativinas/fisiologia , Fator de Transcrição CDX2/genética , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Linhagem da Célula , Células Cultivadas , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Elementos Facilitadores Genéticos , Coração/embriologia , Humanos , Mesoderma/citologia , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transdução de Sinais , Proteínas Smad/antagonistas & inibidores , Elongação da Transcrição Genética , Fatores de Transcrição/genética , beta Catenina/metabolismo
11.
J Cell Mol Med ; 28(2): e18052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041559

RESUMO

Fibrosis refers to excessive build-up of scar tissue and extracellular matrix components in different organs. In recent years, it has been revealed that different cytokines and chemokines, especially Transforming growth factor beta (TGF-ß) is involved in the pathogenesis of fibrosis. It has been shown that TGF-ß is upregulated in fibrotic tissues, and contributes to fibrosis by mediating pathways that are related to matrix preservation and fibroblasts differentiation. There is no doubt that antioxidants protect against different inflammatory conditions by reversing the effects of nitrogen, oxygen and sulfur-based reactive elements. Oxidative stress has a direct impact on chronic inflammation, and as results, prolonged inflammation ultimately results in fibrosis. Different types of antioxidants, in the forms of vitamins, natural compounds or synthetic ones, have been proven to be beneficial in the protection against fibrotic conditions both in vitro and in vivo. In this study, we reviewed the role of different compounds with antioxidant activity in induction or inhibition of TGF-ß/SMAD signalling pathway, with regard to different fibrotic conditions such as gastro-intestinal fibrosis, cardiac fibrosis, pulmonary fibrosis, skin fibrosis, renal fibrosis and also some rare cases of fibrosis, both in animal models and cell lines.


Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta , Animais , Fator de Crescimento Transformador beta/metabolismo , Antioxidantes/farmacologia , Fibrose , Inflamação , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
12.
J Cell Physiol ; 239(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991438

RESUMO

Abnormal function and fibrosis of endometrium caused by cows' endometritis pose difficult implantation of embryos and uterine cavity adhesions. 17ß-Estradiol (E2) serves as the most effective aromatized estrogen, and its synthetase and receptors have been detected in the endometrium. Studies have demonstrated the positive role of estrogen in combating pathological fibrosis in diverse diseases. However, it is still unknown whether E2 regulates endometrium fibrosis in bovine endometritis. Herein, we evaluated the expression patterns of transforming growth factor-ß1 (TGF-ß1), epithelial-mesenchymal transformation (EMT)-related proteins (α-SMA, vimentin N-cadherin and E-cadherin), cytochrome P450 19A1 (CYP19A1), and G protein-coupled estrogen receptor (GPER) in bovine healthy endometrium and Inflammatory endometrium. Our data showed that the inflamed endometrium presented low CYP19A1 and GPER expression, and significantly higher EMT process versus the normal tissue. Moreover, we established a TGF-ß1-induced fibrosis model in BEND cells, and found that E2 inhibited the EMT process of BEND cells in a dose-dependent manner. The anti-fibrotic effect of E2 was blocked by the GPER inhibitor G15, but not the estrogen nuclear receptors (ERs) inhibitor ICI182780. Moreover, the GPER agonist G1 inhibited fibrosis and Smad2/3 phosphorylation but increased the expression of TGFBR3 in BEND cells. Transfection with TGFBR3 small interfering RNA blocked the effect of G1 on fibrosis of BEND cells and upregulated the expression of P-Smad2/3. Our in vivo data also showed that E2 and G1 affected uterus fibrosis in mice endometritis model caused by LPS, which was associated with the inhibition of TGFBR3/Smad2/3 signaling. In conclusion, our data implied that E2 alleviates the fibrosis of TGF-ß1-induced BEND cells, which is associated with the GPER mediation of TGFBR3/Smad2/3 signaling.


Assuntos
Endometrite , Estradiol , Proteoglicanas , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Feminino , Camundongos , Endometrite/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Estradiol/farmacologia , Estrogênios/metabolismo , Fibrose , Receptores Acoplados a Proteínas G/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
13.
Mol Med ; 30(1): 52, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641575

RESUMO

BACKGROUND: Skin fibrosis affects the normal function of the skin. TGF-ß1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-ß1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-ß1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS: The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-ß1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS: SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION: F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.


Assuntos
Polietilenos , Polipropilenos , Dermatopatias , Fator de Crescimento Transformador beta , Animais , Camundongos , Bleomicina/efeitos adversos , Colágeno/metabolismo , Fibrose/tratamento farmacológico , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenos/farmacologia , Polipropilenos/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Proteínas Smad/efeitos dos fármacos , Proteínas Smad/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
14.
Development ; 148(5)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712443

RESUMO

The transforming growth factor ß (TGFß) signaling family is evolutionarily conserved in metazoans. The signal transduction mechanisms of TGFß family members have been expansively investigated and are well understood. During development and homeostasis, numerous TGFß family members are expressed in various cell types with temporally changing levels, playing diverse roles in embryonic development, adult tissue homeostasis and human diseases by regulating cell proliferation, differentiation, adhesion, migration and apoptosis. Here, we discuss the molecular mechanisms underlying signal transduction and regulation of the TGFß subfamily pathways, and then highlight their key functions in mesendoderm induction, dorsoventral patterning and laterality development, as well as in the formation of several representative tissues/organs.


Assuntos
Desenvolvimento Embrionário/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Camadas Germinativas/metabolismo , Proteína Nodal/metabolismo , Organogênese , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/química
15.
Development ; 148(2)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33234717

RESUMO

The ability of zebrafish to heal their heart after injury makes them an attractive model for investigating the mechanisms governing the regenerative process. In this study, we show that the gene cellular communication network factor 2a (ccn2a), previously known as ctgfa, is induced in endocardial cells in the injured tissue and regulates CM proliferation and repopulation of the damaged tissue. We find that, whereas in wild-type animals, CMs track along the newly formed blood vessels that revascularize the injured tissue, in ccn2a mutants CM proliferation and repopulation are disrupted, despite apparently unaffected revascularization. In addition, we find that ccn2a overexpression enhances CM proliferation and improves the resolution of transient collagen deposition. Through loss- and gain-of-function as well as pharmacological approaches, we provide evidence that Ccn2a is necessary for and promotes heart regeneration by enhancing the expression of pro-regenerative extracellular matrix genes, and by inhibiting the chemokine receptor gene cxcr3.1 through a mechanism involving Tgfß/pSmad3 signaling. Thus, Ccn2a positively modulates the innate regenerative response of the adult zebrafish heart.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Coração/fisiopatologia , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Núcleo Celular/metabolismo , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Vasos Coronários/metabolismo , Endocárdio/patologia , Endocárdio/fisiopatologia , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Transporte Proteico , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Peixe-Zebra/genética
16.
Mol Carcinog ; 63(6): 1146-1159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477642

RESUMO

Acute myeloid leukemia (AML) is one of the most prevalent types of leukemia and is challenging to cure for most patients. Basic Leucine Zipper ATF-Like Transcription Factor (BATF) has been reported to participate in the development and progression of numerous tumors. However, its role in AML is largely unknown. In this study, the expression and prognostic value of BATF were examined in AML. Our results demonstrated that BATF expression was upregulated in AML patients, which was significantly correlated with poor clinical characteristics and survival. Afterward, functional experiments were performed after knocking down or overexpressing BATF by transfecting small interfering RNAs and overexpression plasmids into AML cells. Our findings revealed that BATF promoted the migratory and invasive abilities of AML cells in vitro and in vivo. Moreover, the target genes of BATF were searched from databases to explore the binding of BATF to the target gene using ChIP and luciferase assays. Notably, our observations validated that BATF is bound to the promoter region of TGF-ß1, which could transcriptionally enhance the expression of TGF-ß1 and activate the TGF-ß1/Smad/MMPs signaling pathway. In summary, our study established the aberrantly high expression of BATF and its pro-migratory function via the TGF-ß1-Smad2/3-MMP2/9 axis in AML, which provides novel insights into extramedullary infiltration of AML.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Leucemia Mieloide Aguda , Fator de Crescimento Transformador beta1 , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Feminino , Masculino , Animais , Camundongos , Movimento Celular , Prognóstico , Transdução de Sinais , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Regulação Leucêmica da Expressão Gênica , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Proteínas Smad/metabolismo , Proteínas Smad/genética , Invasividade Neoplásica , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética
17.
Hepatology ; 78(5): 1433-1447, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800849

RESUMO

BACKGROUND AND AIMS: Liver fibrosis is a leading indicator for increased mortality and long-term comorbidity in NASH. Activation of HSCs and excessive extracellular matrix production are the hallmarks of liver fibrogenesis. Tyrosine kinase receptor (TrkB) is a multifunctional receptor that participates in neurodegenerative disorders. However, paucity of literature is available about TrkB function in liver fibrosis. Herein, the regulatory network and therapeutic potential of TrkB were explored in the progression of hepatic fibrosis. METHODS AND RESULTS: The protein level of TrkB was decreased in mouse models of CDAHFD feeding or carbon tetrachloride-induced hepatic fibrosis. TrkB suppressed TGF-ß-stimulated proliferation and activation of HSCs in 3-dimensional liver spheroids and significantly repressed TGF-ß/SMAD signaling pathway either in HSCs or in hepatocytes. The cytokine, TGF-ß, boosted Nedd4 family interacting protein-1 (Ndfip1) expression, promoting the ubiquitination and degradation of TrkB through E3 ligase Nedd4-2. Moreover, carbon tetrachloride intoxication-induced hepatic fibrosis in mouse models was reduced by adeno-associated virus vector serotype 6 (AAV6)-mediated TrkB overexpression in HSCs. In addition, in murine models of CDAHFD feeding and Gubra-Amylin NASH (GAN), fibrogenesis was reduced by adeno-associated virus vector serotype 8 (AAV8)-mediated TrkB overexpression in hepatocytes. CONCLUSION: TGF-ß stimulated TrkB degradation through E3 ligase Nedd4-2 in HSCs. TrkB overexpression inhibited the activation of TGF-ß/SMAD signaling and alleviated the hepatic fibrosis both in vitro and in vivo . These findings demonstrate that TrkB could be a significant suppressor of hepatic fibrosis and confer a potential therapeutic target in hepatic fibrosis.


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Fator de Crescimento Transformador beta , Animais , Camundongos , Tetracloreto de Carbono , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
18.
Toxicol Appl Pharmacol ; 489: 117012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906511

RESUMO

Keloid formation has been linked to abnormal fibroblast function, such as excessive proliferation and extracellular matrix (ECM) production. Serum deprivation protein response (SDPR) is a crucial regulator of cellular function under diverse pathological conditions, yet its role in keloid formation remains unknown. The current work investigated the function of SDPR in regulating the proliferation, motility, and ECM production of keloid fibroblasts (KFs), as well as to decipher the mechanisms involved. Analysis of RNA sequencing data from the GEO database demonstrated significant down-regulation of SDPR in KF compared to normal fibroblasts (NFs). This down-regulation was also observed in clinical keloid specimens and isolated KFs. Overexpression of SDPR suppressed the proliferation, motility, and ECM production of KFs, while depletion of SDPR exacerbated the enhancing impact of TGF-ß1 on the proliferation, motility, and ECM production of NFs. Mechanistic studies revealed that SDPR overexpression repressed TGF-ß/Smad signal cascade activation in KFs along with decreased levels of phosphorylated Samd2/3, while SDPR depletion exacerbated TGF-ß/Smad activation in TGF-ß1-stimulated NFs. SDPR overexpression also repressed ERK1/2 activation in KFs, while SDPR depletion exacerbated ERK1/2 activation in TGF-ß1-stimulated NFs. Inhibition of ERK1/2 abolished SDPR-depletion-induced TGF-ß1/Smad activation, cell proliferation, motility, and ECM production in NFs. In conclusion, SDPR represses the proliferation, motility, and ECM production in KFs by blocking the TGF-ß1/Smad pathway in an ERK1/2-dependent manner. The findings highlight the role of SDPR in regulating abnormal behaviors of fibroblasts associated with keloid formation and suggest it as a potential target for anti-keloid therapy development.


Assuntos
Movimento Celular , Proliferação de Células , Matriz Extracelular , Fibroblastos , Queloide , Sistema de Sinalização das MAP Quinases , Proteínas Smad , Fator de Crescimento Transformador beta1 , Humanos , Queloide/patologia , Queloide/metabolismo , Queloide/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Proteínas Smad/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais , Células Cultivadas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Masculino , Feminino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Adulto
19.
BMC Cancer ; 24(1): 204, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350902

RESUMO

BACKGROUND: Colorectal cancer (CRC) is an aggressive tumor of the gastrointestinal tract, which is a major public health concern worldwide. Despite numerous studies, the precise mechanism of metastasis behind its progression remains elusive. As a member of the containing olfactomedin domains protein family, olfactomedin 2 (OLFM2) may play a role in tumor metastasis. It is highly expressed in colorectal cancer, and its role in the metastasis of CRC is still unclear. As such, this study seeks to explore the function of OLFM2 on CRC metastasis and its potential mechanisms. METHODS: Real-time fluorescence quantitative PCR and western blotting were used to study the expression of OLFM2 in human CRC and adjacent normal tissues. Knockdown and overexpression OLFM2 cell lines were constructed using siRNA and overexpression plasmids to explore the role of OLFM2 in the migration and invasion of CRC through transwell, and wound healing experiments. Finally, the expression of epithelial-mesenchymal transition (EMT) -related proteins and TGF-ß/Smad signaling pathway-related proteins was investigated using western blotting. RESULTS: In this study, we observed an elevation of OLFM2 expression levels in CRC tissues. To investigate the function of OLFM2, we overexpressed and knocked down OLFM2. We discovered that OLFM2 knockdown inhibited migration and invasion of colon cancer cells. Furthermore, E-cadherin expression increased while N-cadherin and Vimentin expression were opposite. It is no surprise that overexpressing OLFM2 had the opposite effects. We also identified that OLFM2 knockdown resulted in reduced TGF-ßR1 and downstream molecules p-Smad2 and p-Smad3, which are related to the TGF-ß / Smad pathway. In contrast, overexpressing OLFM2 significantly boosted their expression levels. CONCLUSION: The protein OLFM2 has been identified as a crucial determinant in the progression of CRC. Its mechanism of action involves the facilitation of EMT through the TGF-ß/Smad signaling pathway. Given its pivotal role in CRC, OLFM2 has emerged as a promising diagnostic and therapeutic target for the disease. These results indicate the potential of OLFM2 as a valuable biomarker for CRC diagnosis and treatment and highlight the need for further research exploring its clinical significance.


Assuntos
Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
FASEB J ; 37(5): e22926, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37052733

RESUMO

Glomerulosclerosis is one of the major histopathologic changes in diabetic kidney diseases (DKD), which is characterized by excessive deposition of extracellular matrix (ECM) in the glomerulus mainly produced by mesangial cells in response to transforming growth factor-ß (TGF-ß) stimuli under diabetic conditions. Despite TGF-ß has been implicated as a major pathogenic factor in the development of diabetic glomerulosclerosis, clinical trials of monoclonal antibodies against TGF-ß failed to demonstrate therapeutic benefits. Thus, developing alternative therapeutic strategies to effectively block the TGF-ß/Smad signaling could be of paramount importance for DKD treatment. Emerging evidence indicates that dysregulation of certain lncRNAs can lead to aberrant activation of TGF-ß/Smad signaling. Herein, we identified a novel lncRNA, named DANCR, which could efficiently function as a negative regulator of TGF-ß/Smad signaling in mesangial cells. Ectopic expression of DANCR could specifically block the activation of TGF-ß/Smad signaling induced by high-glucose or TGF-ß in human renal mesangial cells (HRMCs). Mechanistically, DANCR functions to stabilize nemo-like kinase (NLK) mRNA through interaction with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), resulting in enhanced phosphorylating on the linker region of activated Smad2/3 in the nucleus. Taken together, our data have uncovered an lncRNA-based regulatory modality of the TGF-ß/Smad signaling and identified DANCR as an endogenous blocker of TGF-ß/Smad signaling in HRMCs, which may represent a potential therapeutic target against the diabetic glomerulosclerosis.


Assuntos
Nefropatias Diabéticas , RNA Longo não Codificante , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Mesângio Glomerular/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Células Mesangiais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA