Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33811858

RESUMO

The neurotransmitter:sodium symporter (NSS) homolog LeuT from Aquifex aeolicus has proven to be a valuable model for studying the transport mechanism of the NSS family. Crystal structures have captured LeuT in key conformations visited during the transport cycle, allowing for the construction of a nearly complete model of transport, with much of the conformational dynamics studied by computational simulations. Here, we report crystal structures of LeuT representing new intermediate conformations between the outward-facing open and occluded states. These structures, combined with binding and accessibility studies, reveal details of conformational dynamics that can follow substrate binding at the central substrate binding site (S1) of LeuT in outward-facing states, suggesting a potential competition for direction between the outward-open and outward-occluded states at this stage during substrate transport. Our structures further support an intimate interplay between the protonation state of Glu290 and binding of Na1 that may ultimately regulate the outward-open-to-occluded transition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Sódio/metabolismo , Aquifex/metabolismo , Cristalografia por Raios X , Leucina/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Simportadores/química , Simportadores/metabolismo , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 115(38): E8854-E8862, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181291

RESUMO

The coupled transport of ions and substrates allows transporters to accumulate substrates using the energy of transmembrane ion gradients and electrical potentials. During transport, conformational changes that switch accessibility of substrate and ion binding sites from one side of the membrane to the other must be controlled so as to prevent uncoupled movement of ions or substrates. In the neurotransmitter:sodium symporter (NSS) family, Na+ stabilizes the transporter in an outward-open state, thus decreasing the likelihood of uncoupled Na+ transport. Substrate binding, in a step essential for coupled transport, must overcome the effect of Na+, allowing intracellular substrate and Na+ release from an inward-open state. However, the specific elements of the protein that mediate this conformational response to substrate binding are unknown. Previously, we showed that in the prokaryotic NSS transporter LeuT, the effect of Na+ on conformation requires the Na2 site, where it influences conformation by fostering interaction between two domains of the protein. Here, we used cysteine accessibility to measure conformational changes of LeuT in Escherichia coli membranes. We identified a conserved tyrosine residue in the substrate binding site required for substrate to convert LeuT to inward-open states by establishing an interaction between the two transporter domains. We further identify additional required interactions between the two transporter domains in the extracellular pathway. Together with our previous work on the conformational effect of Na+, these results identify mechanistic components underlying ion-substrate coupling in NSS transporters.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Domínios Proteicos , Sódio/metabolismo , Sítios de Ligação , Cátions Monovalentes/metabolismo , Membrana Celular/metabolismo , Cisteína/química , Cisteína/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Ligação Proteica , Transcitose , Tirosina/química , Tirosina/metabolismo
3.
Biochemistry ; 59(13): 1367-1377, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207963

RESUMO

More than 80 loss-of-function (LOF) mutations in the SLC6A8 creatine transporter (hCRT1) are responsible for cerebral creatine deficiency syndrome (CCDS), which gives rise to a spectrum of neurological defects, including intellectual disability, epilepsy, and autism spectrum disorder. To gain insight into the nature of the molecular defects caused by these mutations, we quantitatively profiled the cellular processing, trafficking, expression, and function of eight pathogenic CCDS variants in relation to the wild type (WT) and one neutral isoform. All eight CCDS variants exhibit measurable proteostatic deficiencies that likely contribute to the observed LOF. However, the magnitudes of their specific effects on the expression and trafficking of hCRT1 vary considerably, and we find that the LOF associated with two of these variants primarily arises from the disruption of the substrate-binding pocket. In conjunction with an analysis of structural models of the transporter, we use these data to suggest mechanistic classifications for these variants. To evaluate potential avenues for therapeutic intervention, we assessed the sensitivity of these variants to temperature and measured their response to the proteostasis regulator 4-phenylbutyrate (4-PBA). Only one of the tested variants (G132V) is sensitive to temperature, though its response to 4-PBA is negligible. Nevertheless, 4-PBA significantly enhances the activity of WT hCRT1 in HEK293T cells, which suggests it may be worth evaluating as a therapeutic for female intellectual disability patients carrying a single CCDS mutation. Together, these findings reveal that pathogenic SLC6A8 mutations cause a spectrum of molecular defects that should be taken into consideration in future efforts to develop CCDS therapeutics.


Assuntos
Encefalopatias Metabólicas Congênitas/metabolismo , Creatina/deficiência , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Encefalopatias Metabólicas Congênitas/genética , Creatina/genética , Creatina/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Fenilbutiratos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
4.
Nature ; 503(7474): 141-5, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24121440

RESUMO

The biogenic amine transporters (BATs) regulate endogenous neurotransmitter concentrations and are targets for a broad range of therapeutic agents including selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors (SNRIs) and tricyclic antidepressants (TCAs). Because eukaryotic BATs are recalcitrant to crystallographic analysis, our understanding of the mechanism of these inhibitors and antidepressants is limited. LeuT is a bacterial homologue of BATs and has proven to be a valuable paradigm for understanding relationships between their structure and function. However, because only approximately 25% of the amino acid sequence of LeuT is in common with that of BATs, and as LeuT is a promiscuous amino acid transporter, it does not recapitulate the pharmacological properties of BATs. Indeed, SSRIs and TCAs bind in the extracellular vestibule of LeuT and act as non-competitive inhibitors of transport. By contrast, multiple studies demonstrate that both TCAs and SSRIs are competitive inhibitors for eukaryotic BATs and bind to the primary binding pocket. Here we engineered LeuT to harbour human BAT-like pharmacology by mutating key residues around the primary binding pocket. The final LeuBAT mutant binds the SSRI sertraline with a binding constant of 18 nM and displays high-affinity binding to a range of SSRIs, SNRIs and a TCA. We determined 12 crystal structures of LeuBAT in complex with four classes of antidepressants. The chemically diverse inhibitors have a remarkably similar mode of binding in which they straddle transmembrane helix (TM) 3, wedge between TM3/TM8 and TM1/TM6, and lock the transporter in a sodium- and chloride-bound outward-facing open conformation. Together, these studies define common and simple principles for the action of SSRIs, SNRIs and TCAs on BATs.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Antidepressivos Tricíclicos/farmacologia , Aminas Biogênicas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Proteínas Recombinantes de Fusão/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Antidepressivos de Segunda Geração/metabolismo , Antidepressivos Tricíclicos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Competitiva/efeitos dos fármacos , Cloretos/metabolismo , Cristalografia por Raios X , Humanos , Mazindol/metabolismo , Mazindol/farmacologia , Modelos Moleculares , Mutação , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Sertralina/metabolismo , Sertralina/farmacologia , Sódio/metabolismo , Relação Estrutura-Atividade
5.
J Biol Chem ; 292(18): 7372-7384, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28320858

RESUMO

Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by the reuptake of released neurotransmitters. This active accumulation of substrate against its concentration gradient is driven by the transmembrane Na+ gradient and requires that the transporter traverses several conformational states. LeuT, a prokaryotic NSS homolog, has been crystallized in outward-open, outward-occluded, and inward-open states. Two crystal structures of another prokaryotic NSS homolog, the multihydrophobic amino acid transporter (MhsT) from Bacillus halodurans, have been resolved in novel inward-occluded states, with the extracellular vestibule closed and the intracellular portion of transmembrane segment 5 (TM5i) in either an unwound or a helical conformation. We have investigated the potential involvement of TM5i in binding and unbinding of Na2, i.e. the Na+ bound in the Na2 site, by carrying out comparative molecular dynamics simulations of the models derived from the two MhsT structures. We find that the helical TM5i conformation is associated with a higher propensity for Na2 release, which leads to the repositioning of the N terminus and transition to an inward-open state. By using comparative interaction network analysis, we also identify allosteric pathways connecting TM5i and the Na2 binding site to the extracellular and intracellular regions. Based on our combined computational and mutagenesis studies of MhsT and LeuT, we propose that TM5i plays a key role in Na2 binding and release associated with the conformational transition toward the inward-open state, a role that is likely to be shared across the NSS family.


Assuntos
Bacillus/química , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Sódio/química , Regulação Alostérica , Sistemas de Transporte de Aminoácidos , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Domínios Proteicos , Sódio/metabolismo
6.
J Chem Inf Model ; 58(6): 1244-1252, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29851339

RESUMO

Neurotransmitter:sodium symporters (NSS) terminate neurotransmission through Na+-driven reuptake of cognate neurotransmitters. Crystallographically, whereas both substrates and inhibitors have been found to bind in the central binding (S1) site of NSS, inhibitors were found to bind to a second binding (S2) site in the extracellular vestibule (EV) of transporters for leucine (LeuT) and serotonin. On the basis of computational and experimental studies, we proposed that substrates bind to the S2 site of LeuT as well and that substrate binding to the S2 site is essential for Na+-coupled symport. Recent binding experiments show that substrate (l-Trp) binding in the S2 site of MhsT, another bacterial NSS, is also central to the allosteric transport mechanism. Here, we used extensive molecular dynamics simulations combined with Markov state model analysis to investigate the interaction of l-Trp with the EV of MhsT and identified potential binding poses of l-Trp as well as induced conformational changes in the EV. Our computational findings were validated by experimental mutagenesis studies and shed light on the ligand binding characteristics of the EV of NSS, which may facilitate development of allosteric ligands targeting NSS.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Bacillus/química , Proteínas de Bactérias/química , Sítios de Ligação , Cadeias de Markov , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
7.
Nature ; 490(7418): 126-30, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22940865

RESUMO

Betaine and Na(+) symport has been extensively studied in the osmotically regulated transporter BetP from Corynebacterium glutamicum, a member of the betaine/choline/carnitine transporter family, which shares the conserved LeuT-like fold of two inverted structural repeats. BetP adjusts its transport activity by sensing the cytoplasmic K(+) concentration as a measure for hyperosmotic stress via the osmosensing carboxy-terminal domain. BetP needs to be in a trimeric state for communication between individual protomers through several intratrimeric interaction sites. Recently, crystal structures of inward-facing BetP trimers have contributed to our understanding of activity regulation on a molecular level. Here we report new crystal structures, which reveal two conformationally asymmetric BetP trimers, capturing among them three distinct transport states. We observe a total of four new conformations at once: an outward-open apo and an outward-occluded apo state, and two closed transition states--one in complex with betaine and one substrate-free. On the basis of these new structures, we identified local and global conformational changes in BetP that underlie the molecular transport mechanism, which partially resemble structural changes observed in other sodium-coupled LeuT-like fold transporters, but show differences we attribute to the osmolytic nature of betaine, the exclusive substrate specificity and the regulatory properties of BetP.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Corynebacterium glutamicum/química , Multimerização Proteica , Apoproteínas/química , Apoproteínas/metabolismo , Betaína/química , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Citoplasma/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA , Modelos Moleculares , Periplasma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Conformação Proteica , Dobramento de Proteína , Sódio/metabolismo , Relação Estrutura-Atividade , Simportadores
8.
J Biol Chem ; 291(3): 1456-71, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582198

RESUMO

In LeuT, a prokaryotic homolog of neurotransmitter transporters, Na(+) stabilizes outward-open conformational states. We examined how each of the two LeuT Na(+) binding sites contributes to Na(+)-dependent closure of the cytoplasmic pathway using biochemical and biophysical assays of conformation. Mutating either of two residues that contribute to the Na2 site completely prevented cytoplasmic closure in response to Na(+), suggesting that Na2 is essential for this conformational change, whereas Na1 mutants retained Na(+) responsiveness. However, mutation of Na1 residues also influenced the Na(+)-dependent conformational change in ways that varied depending on the position mutated. Computational analyses suggest those mutants influence the ability of Na1 binding to hydrate the substrate pathway and perturb an interaction network leading to the extracellular gate. Overall, the results demonstrate that occupation of Na2 stabilizes outward-facing conformations presumably through a direct interaction between Na(+) and transmembrane helices 1 and 8, whereas Na(+) binding at Na1 influences conformational change through a network of intermediary interactions. The results also provide evidence that N-terminal release and helix motions represent distinct steps in cytoplasmic pathway opening.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Organismos Aquáticos/metabolismo , Proteínas de Bactérias/química , Bactérias Gram-Negativas/metabolismo , Modelos Moleculares , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Sódio/metabolismo , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cisteína/química , Ligantes , Lipossomos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteolipídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
Nature ; 474(7349): 109-13, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21516104

RESUMO

Neurotransmitter/Na(+) symporters (NSSs) terminate neuronal signalling by recapturing neurotransmitter released into the synapse in a co-transport (symport) mechanism driven by the Na(+) electrochemical gradient. NSSs for dopamine, noradrenaline and serotonin are targeted by the psychostimulants cocaine and amphetamine, as well as by antidepressants. The crystal structure of LeuT, a prokaryotic NSS homologue, revealed an occluded conformation in which a leucine (Leu) and two Na(+) are bound deep within the protein. This structure has been the basis for extensive structural and computational exploration of the functional mechanisms of proteins with a LeuT-like fold. Subsequently, an 'outward-open' conformation was determined in the presence of the inhibitor tryptophan, and the Na(+)-dependent formation of a dynamic outward-facing intermediate was identified using electron paramagnetic resonance spectroscopy. In addition, single-molecule fluorescence resonance energy transfer imaging has been used to reveal reversible transitions to an inward-open LeuT conformation, which involve the movement of transmembrane helix TM1a away from the transmembrane helical bundle. We investigated how substrate binding is coupled to structural transitions in LeuT during Na(+)-coupled transport. Here we report a process whereby substrate binding from the extracellular side of LeuT facilitates intracellular gate opening and substrate release at the intracellular face of the protein. In the presence of alanine, a substrate that is transported ∼10-fold faster than leucine, we observed alanine-induced dynamics in the intracellular gate region of LeuT that directly correlate with transport efficiency. Collectively, our data reveal functionally relevant and previously hidden aspects of the NSS transport mechanism that emphasize the functional importance of a second substrate (S2) binding site within the extracellular vestibule. Substrate binding in this S2 site appears to act cooperatively with the primary substrate (S1) binding site to control intracellular gating more than 30 Šaway, in a manner that allows the Na(+) gradient to power the transport mechanism.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Modelos Moleculares , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Humanos , Leucina/metabolismo , Lítio/metabolismo , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Ligação Proteica/genética , Estrutura Secundária de Proteína , Sódio/metabolismo , Sódio/farmacologia
10.
J Biol Chem ; 290(1): 544-55, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25381247

RESUMO

The bacterial sodium-coupled leucine/alanine transporter LeuT is broadly used as a model system for studying the transport mechanism of neurotransmitters because of its structural and functional homology to mammalian transporters such as serotonin, dopamine, or norepinephrine transporters, and because of the resolution of its structure in different states. Although the binding sites (S1 for substrate, and Na1 and Na2 for two co-transported sodium ions) have been resolved, we still lack a mechanistic understanding of coupled Na(+)- and substrate-binding events. We present here results from extensive (>20 µs) unbiased molecular dynamics simulations generated using the latest computing technology. Simulations show that sodium binds initially the Na1 site, but not Na2, and, consistently, sodium unbinding/escape to the extracellular (EC) region first takes place at Na2, succeeded by Na1. Na2 diffusion back to the EC medium requires prior dissociation of substrate from S1. Significantly, Na(+) binding (and unbinding) consistently involves a transient binding to a newly discovered site, Na1″, near S1, as an intermediate state. A robust sequence of substrate uptake events coupled to sodium bindings and translocations between those sites assisted by hydration emerges from the simulations: (i) bindings of a first Na(+) to Na1″, translocation to Na1, a second Na(+) to vacated Na1″ and then to Na2, and substrate to S1; (ii) rotation of Phe(253) aromatic group to seclude the substrate from the EC region; and (iii) concerted tilting of TM1b and TM6a toward TM3 and TM8 to close the EC vestibule.


Assuntos
Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Sódio/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cinética , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Termodinâmica
11.
J Biol Chem ; 290(22): 13992-4003, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25869126

RESUMO

Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na(+)-dependent reuptake of released neurotransmitters. Previous studies suggested that Na(+)-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na(+) binding and transport (i.e. replacing Na(+) with Li(+) or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na(+) cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na(+) dependence. Thus, the detailed AIN generated from our method is shown to connect Na(+) binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na(+) binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.


Assuntos
Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Sódio/química , Sítio Alostérico , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Escherichia coli/metabolismo , Humanos , Íons , Ligantes , Lítio/química , Metais/química , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica
12.
J Biol Chem ; 290(44): 26725-38, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26363074

RESUMO

Neurotransmitter:sodium symporters (NSSs) mediate reuptake of neurotransmitters from the synaptic cleft and are targets for several therapeutics and psychostimulants. The prokaryotic NSS homologue, LeuT, represents a principal structural model for Na(+)-coupled transport catalyzed by these proteins. Here, we used site-directed fluorescence quenching spectroscopy to identify in LeuT a substrate-induced conformational rearrangement at the inner gate conceivably leading to formation of a structural intermediate preceding transition to the inward-open conformation. The substrate-induced, Na(+)-dependent change required an intact primary substrate-binding site and involved increased water exposure of the cytoplasmic end of transmembrane segment 5. The findings were supported by simulations predicting disruption of an intracellular interaction network leading to a discrete rotation of transmembrane segment 5 and the adjacent intracellular loop 2. The magnitude of the spectroscopic response correlated inversely with the transport rate for different substrates, suggesting that stability of the intermediate represents an unrecognized rate-limiting barrier in the NSS transport mechanism.


Assuntos
Proteínas de Bactérias/química , Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Sódio/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Domínio Catalítico , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Sódio/metabolismo , Espectrometria de Fluorescência/métodos
13.
J Biol Chem ; 290(1): 127-41, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25398883

RESUMO

The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ~1. In addition, the related and more experimentally tractable SSS member PutP (the Na(+)/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Proteínas de Escherichia coli/química , Galactose/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas de Transporte de Sódio-Glucose/química , Sódio/química , Simportadores/química , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sítios de Ligação , Transporte Biológico , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Galactose/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Sódio/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Simportadores/metabolismo , Termodinâmica , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo
14.
Biochim Biophys Acta ; 1850(3): 500-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24769398

RESUMO

BACKGROUND: The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters (NSS). Due to their important role, dysfunctions are associated with several psychiatric and neurological diseases and they also serve as targets for a wide range of therapeutic and illicit drugs. Despite the central physiological and pharmacological importance, direct evidence on structure-function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. SCOPE OF REVIEW: To provide an update on what is known about the binding sites for substrates and inhibitors in the LeuT. The different binding modes and binding sites will be discussed with special emphasis on the possible existence of a second substrate binding site. It is the goal to give an insight into how investigations on ligand binding in LeuT have provided basic knowledge about transporter conformations and translocation mechanism which can pave the road for a deeper understanding of drug binding and function of the mammalian transporters. MAJOR CONCLUSIONS: The LeuT is a suitable model for the structural investigation of NSS proteins including the possible location of drug binding sites. It is still debated whether the LeuT is a suitable model for the molecular mechanisms behind substrate translocation. GENERAL SIGNIFICANCE: Structure and functional aspects of NSS proteins are central for understanding synaptic transmission. With the purification and crystallization of LeuT as well as the dopamine transporter from Drosophila melanogaster, the application of biophysical methods such as fluorescence spectroscopy, neutron- or x-ray scattering and NMR for understanding its function becomes increasingly available. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Proteínas de Bactérias/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
15.
EMBO J ; 31(1): 228-35, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21952050

RESUMO

LeuT is a bacterial homologue of the neurotransmitter:sodium symporter (NSS) family and, being the only NSS member to have been structurally characterized by X-ray crystallography, is a model protein for studying transporter structure and mechanism. Transport activity in LeuT was hypothesized to require structural transitions between open-to-out and occluded conformations dependent upon protein:ligand binding complementarity. Here, using crystallographic and functional analysis, we show that binding site modification produces changes in both structure and activity that are consistent with complementarity-dependent structural transitions to the occluded state. The mutation I359Q converts the activity of tryptophan from inhibitor to transportable substrate. This mutation changes the local environment of the binding site, inducing the bound tryptophan to adopt a different conformer than in the wild-type complex. Instead of trapping the transporter open, tryptophan binding now allows the formation of an occluded state. Thus, transport activity is correlated to the ability of the ligand to promote the structural transition to the occluded state, a step in the transport cycle that is dependent on protein:ligand complementarity in the central binding site.


Assuntos
Proteínas de Bactérias/química , Leucina/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Triptofano/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Dados de Sequência Molecular , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Engenharia de Proteínas , Alinhamento de Sequência
16.
Amino Acids ; 48(8): 2049-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951207

RESUMO

Creatine (Cr) and phosphocreatine constitute an energy shuttle that links ATP production in mitochondria to subcellular locations of ATP consumption. Cells in tissues that are reliant on this energy shuttle, such as myocytes and neurons, appear to have very limited ability to synthesize creatine. Therefore, these cells depend on Cr uptake across the cell membrane by a specialized creatine transporter (CrT solute carrier SLC6A8) in order to maintain intracellular creatine levels. Cr supplementation has been shown to have a beneficial effect in numerous in vitro and in vivo models, particularly in cases of oxidative stress, and is also widely used by athletes as a performance enhancement nutraceutical. Intracellular creatine content is maintained within narrow limits. However, the physiological and cellular mechanisms that mediate Cr transport during health and disease (such as cardiac failure) are not understood. In this narrative mini-review, we summarize the last three decades of research on CrT structure, function and regulation.


Assuntos
Creatina/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Células Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Relação Estrutura-Atividade
17.
Nature ; 468(7327): 1129-32, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21179170

RESUMO

Neurotransmitter/sodium symporters (NSSs) couple the uptake of neurotransmitter with one or more sodium ions, removing neurotransmitter from the synaptic cleft. NSSs are essential to the function of chemical synapses, are associated with multiple neurological diseases and disorders, and are the targets of therapeutic and illicit drugs. LeuT, a prokaryotic orthologue of the NSS family, is a model transporter for understanding the relationships between molecular mechanism and atomic structure in a broad range of sodium-dependent and sodium-independent secondary transporters. At present there is a controversy over whether there are one or two high-affinity substrate binding sites in LeuT. The first-reported crystal structure of LeuT, together with subsequent functional and structural studies, provided direct evidence for a single, high-affinity, centrally located substrate-binding site, defined as the S1 site. Recent binding, flux and molecular simulation studies, however, have been interpreted in terms of a model where there are two high-affinity binding sites: the central, S1, site and a second, the S2 site, located within the extracellular vestibule. Furthermore, it was proposed that the S1 and S2 sites are allosterically coupled such that occupancy of the S2 site is required for the cytoplasmic release of substrate from the S1 site. Here we address this controversy by performing direct measurement of substrate binding to wild-type LeuT and to S2 site mutants using isothermal titration calorimetry, equilibrium dialysis and scintillation proximity assays. In addition, we perform uptake experiments to determine whether the proposed allosteric coupling between the putative S2 site and the S1 site manifests itself in the kinetics of substrate flux. We conclude that LeuT harbours a single, centrally located, high-affinity substrate-binding site and that transport is well described by a simple, single-substrate kinetic mechanism.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Sítios de Ligação , Humanos , Ionóforos/farmacologia , Cinética , Leucina/genética , Modelos Moleculares , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Transporte Proteico/efeitos dos fármacos , Valinomicina/farmacologia
18.
Nature ; 465(7295): 188-93, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20463731

RESUMO

Neurotransmitter:Na(+) symporters (NSS) remove neurotransmitters from the synapse in a reuptake process that is driven by the Na(+) gradient. Drugs that interfere with this reuptake mechanism, such as cocaine and antidepressants, profoundly influence behaviour and mood. To probe the nature of the conformational changes that are associated with substrate binding and transport, we have developed a single-molecule fluorescence imaging assay and combined it with functional and computational studies of the prokaryotic NSS homologue LeuT. Here we show molecular details of the modulation of intracellular gating of LeuT by substrates and inhibitors, as well as by mutations that alter binding, transport or both. Our direct observations of single-molecule transitions, reflecting structural dynamics of the intracellular region of the transporter that might be masked by ensemble averaging or suppressed under crystallographic conditions, are interpreted in the context of an allosteric mechanism that couples ion and substrate binding to transport.


Assuntos
Aquifoliaceae/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Alanina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Leucina/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Conformação Proteica , Sódio/metabolismo
19.
Mol Cell ; 30(6): 667-77, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18570870

RESUMO

Eukaryotic neurotransmitter:sodium symporters (NSSs), targets for antidepressants and psychostimulants, terminate neurotransmission by sodium-driven reuptake. The crystal structure of LeuT(Aa), a prokaryotic NSS homolog, revealed an occluded state in which one leucine and two Na(+) ions are bound, but provided limited clues to the molecular mechanism of transport. Using steered molecular dynamics simulations, we explored the substrate translocation pathway of LeuT. We identified a second substrate binding site located in the extracellular vestibule comprised of residues shown recently to participate in binding tricyclic antidepressants. Binding and flux experiments showed that the two binding sites can be occupied simultaneously. The substrate in the secondary site allosterically triggers intracellular release of Na(+) and substrate from the primary site, thereby functioning as a "symport effector." Because tricyclic antidepressants bind differently to this secondary site, they do not promote substrate release from the primary site and thus act as symport uncouplers and inhibit transport.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Sódio/metabolismo , Sítios de Ligação , Plaquetas/metabolismo , Comunicação Celular , Simulação por Computador , Humanos , Cinética , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Mutagênese , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(21): 8489-94, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23641004

RESUMO

Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Cloretos/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Brometos/química , Brometos/metabolismo , Cloretos/metabolismo , Cristalografia por Raios X , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA