Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.662
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(6): 1375-1386.e11, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474366

RESUMO

In search of the molecular identities of cold-sensing receptors, we carried out an unbiased genetic screen for cold-sensing mutants in C. elegans and isolated a mutant allele of glr-3 gene that encodes a kainate-type glutamate receptor. While glutamate receptors are best known to transmit chemical synaptic signals in the CNS, we show that GLR-3 senses cold in the peripheral sensory neuron ASER to trigger cold-avoidance behavior. GLR-3 transmits cold signals via G protein signaling independently of its glutamate-gated channel function, suggesting GLR-3 as a metabotropic cold receptor. The vertebrate GLR-3 homolog GluK2 from zebrafish, mouse, and human can all function as a cold receptor in heterologous systems. Mouse DRG sensory neurons express GluK2, and GluK2 knockdown in these neurons suppresses their sensitivity to cold but not cool temperatures. Our study identifies an evolutionarily conserved cold receptor, revealing that a central chemical receptor unexpectedly functions as a thermal receptor in the periphery.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Receptores de Glutamato/fisiologia , Receptores de Ácido Caínico/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sensação Térmica/fisiologia , Animais , Células CHO , Proteínas de Caenorhabditis elegans/genética , Temperatura Baixa , Cricetulus , Humanos , Camundongos , Neurônios/metabolismo , Receptores de Glutamato/genética , Receptores de Ácido Caínico/genética , Receptores de Glutamato Metabotrópico/genética , Sensação Térmica/genética
2.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929899

RESUMO

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/fisiologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Restrição Calórica , Células HEK293 , Humanos , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
3.
Genes Dev ; 34(15-16): 1033-1038, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675325

RESUMO

Kynurenic acid (KynA) levels link peripheral metabolic status to neural functions including learning and memory. Since neural KynA levels dampen learning capacity, KynA reduction has been proposed as a therapeutic strategy for conditions of cognitive deficit such as neurodegeneration. While KynA is generated locally within the nervous system, its precursor, kynurenine (Kyn), is largely derived from peripheral resources. The mechanisms that import Kyn into the nervous system are poorly understood. Here, we provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Ácido Cinurênico/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/fisiologia , Neurônios/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ingestão de Alimentos , Cinurenina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Aprendizagem/fisiologia , Mutação
4.
Proc Natl Acad Sci U S A ; 121(7): e2302660121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315866

RESUMO

The pharynx of the nematode Caenorhabditis elegans is a neuromuscular organ that exhibits typical pumping motions, which result in the intake of food particles from the environment. In-depth inspection reveals slightly different dynamics at the various pharyngeal areas, rather than synchronous pumping motions of the whole organ, which are important for its effective functioning. While the different pumping dynamics are well characterized, the underlying mechanisms that generate them are not known. In this study, the C. elegans pharynx was modeled in a bottom-up fashion, including all of the underlying biological processes that lead to, and including, its end function, food intake. The mathematical modeling of all processes allowed performing comprehensive, quantitative analyses of the system as a whole. Our analyses provided detailed explanations for the various pumping dynamics generated at the different pharyngeal areas; a fine-resolution description of muscle dynamics, both between and within different pharyngeal areas; a quantitative assessment of the values of many parameters of the system that are unavailable in the literature; and support for a functional role of the marginal cells, which are currently assumed to mainly have a structural role in the pharynx. In addition, our model predicted that in tiny organisms such as C. elegans, the generation of long-lasting action potentials must involve ions other than calcium. Our study exemplifies the power of mathematical models, which allow a more accurate, higher-resolution inspection of the studied system, and an easier and faster execution of in silico experiments than feasible in the lab.


Assuntos
Proteínas de Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/fisiologia , Faringe/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Comportamento Alimentar/fisiologia
5.
Cell ; 147(4): 922-33, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22078887

RESUMO

C. elegans is widely used to dissect how neural circuits and genes generate behavior. During locomotion, worms initiate backward movement to change locomotion direction spontaneously or in response to sensory cues; however, the underlying neural circuits are not well defined. We applied a multidisciplinary approach to map neural circuits in freely behaving worms by integrating functional imaging, optogenetic interrogation, genetic manipulation, laser ablation, and electrophysiology. We found that a disinhibitory circuit and a stimulatory circuit together promote initiation of backward movement and that circuitry dynamics is differentially regulated by sensory cues. Both circuits require glutamatergic transmission but depend on distinct glutamate receptors. This dual mode of motor initiation control is found in mammals, suggesting that distantly related organisms with anatomically distinct nervous systems may adopt similar strategies for motor control. Additionally, our studies illustrate how a multidisciplinary approach facilitates dissection of circuit and synaptic mechanisms underlying behavior in a genetic model organism.


Assuntos
Caenorhabditis elegans/fisiologia , Atividade Motora , Vias Neurais , Sinapses/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Eletrofisiologia , Interneurônios/fisiologia , Mutação , Pressão Osmótica , Receptores de Glutamato/genética , Receptores de Glutamato/fisiologia
6.
J Neurosci ; 44(31)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38951038

RESUMO

At chemical synapses, voltage-gated Ca2+ channels (VGCCs) translate electrical signals into a trigger for synaptic vesicle (SV) fusion. VGCCs and the Ca2+ microdomains they elicit must be located precisely to primed SVs to evoke rapid transmitter release. Localization is mediated by Rab3-interacting molecule (RIM) and RIM-binding proteins, which interact and bind to the C terminus of the CaV2 VGCC α-subunit. We studied this machinery at the mixed cholinergic/GABAergic neuromuscular junction of Caenorhabditis elegans hermaphrodites. rimb-1 mutants had mild synaptic defects, through loosening the anchoring of UNC-2/CaV2 and delaying the onset of SV fusion. UNC-10/RIM deletion much more severely affected transmission. Although postsynaptic depolarization was reduced, rimb-1 mutants had increased cholinergic (but reduced GABAergic) transmission, to compensate for the delayed release. This did not occur when the excitation-inhibition (E-I) balance was altered by removing GABA transmission. Further analyses of GABA defective mutants and GABAA or GABAB receptor deletions, as well as cholinergic rescue of RIMB-1, emphasized that GABA neurons may be more affected than cholinergic neurons. Thus, RIMB-1 function differentially affects excitation-inhibition balance in the different motor neurons, and RIMB-1 thus may differentially regulate transmission within circuits. Untethering the UNC-2/CaV2 channel by removing its C-terminal PDZ ligand exacerbated the rimb-1 defects, and similar phenotypes resulted from acute degradation of the CaV2 ß-subunit CCB-1. Therefore, untethering of the CaV2 complex is as severe as its elimination, yet it does not abolish transmission, likely due to compensation by CaV1. Thus, robustness and flexibility of synaptic transmission emerge from VGCC regulation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Junção Neuromuscular , Transmissão Sináptica , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Proteínas de Transporte , Proteínas de Membrana , Mutação , Rede Nervosa/fisiologia , Rede Nervosa/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(11): e2123110119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263226

RESUMO

SignificanceAn enduring mystery of development is how its timing is controlled, particularly for development after birth, where timing is highly flexible and depends on environmental conditions, such as food availability and diet. We followed timing of cell- and organism-level events in individual Caenorhabditis elegans larvae developing from hatching to adulthood, uncovering widespread variations in event timing, both between isogenic individuals in the same environment and when changing conditions and genotypes. However, in almost all cases, we found that events occurred at the same time, when time was rescaled by the duration of development measured in each individual. This observation of "temporal scaling" poses strong constraints on models to explain timing of larval development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Relógios Circadianos , Fatores de Transcrição , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Larva , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
8.
Proc Natl Acad Sci U S A ; 119(33): e2109378119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947619

RESUMO

Specific recognition of cellular cargo and efficient transport to its correct intracellular destination is an infrastructural challenge faced by most eukaryotic cells. This remarkable deed is accomplished by processive motor proteins that are subject to robust regulatory mechanisms. The first level of regulation entails the ability of the motor to suppress its own activity. This autoinhibition is eventually relieved by specific cargo binding. To better understand the role of the cargo during motor activation, we dissected the activation mechanism of the ciliary homodimeric kinesin-2 from Caenorhabditis elegans by its physiological cargo. In functional reconstitution assays, we identified two cargo adaptor proteins that together are necessary and sufficient to allosterically activate the autoinhibited motor. Surprisingly, the orthologous adaptor proteins from the unicellular green algae Chlamydomonas reinhardtii also fully activated the kinesin-2 from worm, even though C. reinhardtii itself lacks a homodimeric kinesin-2 motor. The latter suggested that a motor activation mechanism similar to the C. elegans model existed already well before metazoans evolved, and prompted us to scrutinize predicted homodimeric kinesin-2 orthologs in other evolutionarily distant eukaryotes. We show that the ciliate Tetrahymena thermophila not only possesses a homodimeric kinesin-2 but that it also shares the same allosteric activation mechanism that we delineated in the C. elegans model. Our results point to a much more fundamental role of homodimeric kinesin-2 in intraflagellar transport (IFT) than previously thought and warrant further scrutiny of distantly related organisms toward a comprehensive picture of the IFT process and its evolution.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Sequência de Aminoácidos , Animais , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Cílios/metabolismo , Sequência Conservada , Flagelos/metabolismo , Cinesinas/genética , Cinesinas/fisiologia
9.
Proc Natl Acad Sci U S A ; 119(37): e2206817119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067313

RESUMO

The classification of neurons into distinct types reveals hierarchical taxonomic relationships that reflect the extent of similarity between neuronal cell types. At the base of such taxonomies are neuronal cells that are very similar to one another but differ in a small number of reproducible and select features. How are very similar members of a neuron class that share many features instructed to diversify into distinct subclasses? We show here that the six very similar members of the Caenorhabditis elegans IL2 sensory neuron class, which are all specified by a homeobox terminal selector, unc-86/BRN3, differentiate into two subtly distinct subclasses, a dorsoventral subclass and a lateral subclass, by the toggle switch-like action of the sine oculis/SIX homeobox gene unc-39. unc-39 is expressed only in the lateral IL2 neurons, and loss of unc-39 leads to a homeotic transformation of the lateral into the dorsoventral class; conversely, ectopic unc-39 expression converts the dorsoventral subclass into the lateral subclass. Hence, a terminal selector homeobox gene controls both class- as well as subclass-specific features, while a subordinate homeobox gene determines the ability of the class-specific homeobox gene to activate subtype-specific target genes. We find a similar regulatory mechanism operating in a distinct class of six motor neurons. Our findings underscore the importance of homeobox genes in neuronal identity control and invite speculations about homeotic identity transformations as potential drivers of evolutionary novelty during cell-type evolution in the brain.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Genes Homeobox , Proteínas de Homeodomínio , Células Receptoras Sensoriais , Fatores de Transcrição , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Neurônios Motores/classificação , Neurônios Motores/citologia , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
10.
PLoS Biol ; 19(7): e3001334, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232959

RESUMO

During development, signal-regulated transcription factors (TFs) act as basal repressors and upon signalling through morphogens or cell-to-cell signalling shift to activators, mediating precise and transient responses. Conversely, at the final steps of neuron specification, terminal selector TFs directly initiate and maintain neuron-type specific gene expression through enduring functions as activators. C. elegans contains 3 types of serotonin synthesising neurons that share the expression of the serotonin biosynthesis pathway genes but not of other effector genes. Here, we find an unconventional role for LAG-1, the signal-regulated TF mediator of the Notch pathway, as terminal selector for the ADF serotonergic chemosensory neuron, but not for other serotonergic neuron types. Regulatory regions of ADF effector genes contain functional LAG-1 binding sites that mediate activation but not basal repression. lag-1 mutants show broad defects in ADF effector genes activation, and LAG-1 is required to maintain ADF cell fate and functions throughout life. Unexpectedly, contrary to reported basal repression state for LAG-1 prior to Notch receptor activation, gene expression activation in the ADF neuron by LAG-1 does not require Notch signalling, demonstrating a default activator state for LAG-1 independent of Notch. We hypothesise that the enduring activity of terminal selectors on target genes required uncoupling LAG-1 activating role from receiving the transient Notch signalling.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neurônios Serotoninérgicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/citologia , Linhagem da Célula , Receptores Notch/fisiologia , Neurônios Serotoninérgicos/citologia , Serotonina/metabolismo
11.
PLoS Biol ; 19(4): e3001204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891586

RESUMO

Many cell types display the remarkable ability to alter their cellular phenotype in response to specific external or internal signals. Such phenotypic plasticity is apparent in the nematode Caenorhabditis elegans when adverse environmental conditions trigger entry into the dauer diapause stage. This entry is accompanied by structural, molecular, and functional remodeling of a number of distinct tissue types of the animal, including its nervous system. The transcription factor (TF) effectors of 3 different hormonal signaling systems, the insulin-responsive DAF-16/FoxO TF, the TGFß-responsive DAF-3/SMAD TF, and the steroid nuclear hormone receptor, DAF-12/VDR, a homolog of the vitamin D receptor (VDR), were previously shown to be required for entering the dauer arrest stage, but their cellular and temporal focus of action for the underlying cellular remodeling processes remained incompletely understood. Through the generation of conditional alleles that allowed us to spatially and temporally control gene activity, we show here that all 3 TFs are not only required to initiate tissue remodeling upon entry into the dauer stage, as shown before, but are also continuously required to maintain the remodeled state. We show that DAF-3/SMAD is required in sensory neurons to promote and then maintain animal-wide tissue remodeling events. In contrast, DAF-16/FoxO or DAF-12/VDR act cell-autonomously to control anatomical, molecular, and behavioral remodeling events in specific cell types. Intriguingly, we also uncover non-cell autonomous function of DAF-16/FoxO and DAF-12/VDR in nervous system remodeling, indicating the presence of several insulin-dependent interorgan signaling axes. Our findings provide novel perspectives into how hormonal systems control tissue remodeling.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Comunicação Celular/genética , Plasticidade Celular/genética , Fatores de Transcrição Forkhead/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Especificidade de Órgãos/genética , Organogênese/genética , Comunicação Parácrina/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/genética
12.
PLoS Genet ; 17(11): e1009599, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807903

RESUMO

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , MicroRNAs/fisiologia , Biossíntese de Proteínas/fisiologia , Grânulos de Estresse/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Processamento Pós-Transcricional do RNA
13.
PLoS Genet ; 17(11): e1009881, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780472

RESUMO

Many tissue-specific stem cells maintain the ability to produce multiple cell types during long periods of non-division, or quiescence. FOXO transcription factors promote quiescence and stem cell maintenance, but the mechanisms by which FOXO proteins promote multipotency during quiescence are still emerging. The single FOXO ortholog in C. elegans, daf-16, promotes entry into a quiescent and stress-resistant larval stage called dauer in response to adverse environmental cues. During dauer, stem and progenitor cells maintain or re-establish multipotency to allow normal development to resume after dauer. We find that during dauer, daf-16/FOXO prevents epidermal stem cells (seam cells) from prematurely adopting differentiated, adult characteristics. In particular, dauer larvae that lack daf-16 misexpress collagens that are normally adult-enriched. Using col-19p::gfp as an adult cell fate marker, we find that all major daf-16 isoforms contribute to opposing col-19p::gfp expression during dauer. By contrast, daf-16(0) larvae that undergo non-dauer development do not misexpress col-19p::gfp. Adult cell fate and the timing of col-19p::gfp expression are regulated by the heterochronic gene network, including lin-41 and lin-29. lin-41 encodes an RNA-binding protein orthologous to LIN41/TRIM71 in mammals, and lin-29 encodes a conserved zinc finger transcription factor. In non-dauer development, lin-41 opposes adult cell fate by inhibiting the translation of lin-29, which directly activates col-19 transcription and promotes adult cell fate. We find that during dauer, lin-41 blocks col-19p::gfp expression, but surprisingly, lin-29 is not required in this context. Additionally, daf-16 promotes the expression of lin-41 in dauer larvae. The col-19p::gfp misexpression phenotype observed in dauer larvae with reduced daf-16 requires the downregulation of lin-41, but does not require lin-29. Taken together, this work demonstrates a novel role for daf-16/FOXO as a heterochronic gene that promotes expression of lin-41/TRIM71 to contribute to multipotent cell fate in a quiescent stem cell model.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Linhagem da Célula , Fatores de Transcrição Forkhead/fisiologia , Fatores de Transcrição/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Colágeno/metabolismo , Fatores de Transcrição Forkhead/genética , Larva/citologia , Larva/metabolismo , Fatores de Transcrição/genética
14.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883277

RESUMO

The position of recombination events established along chromosomes in early prophase I and the chromosome remodeling that takes place in late prophase I are intrinsically linked steps of meiosis that need to be tightly regulated to ensure accurate chromosome segregation and haploid gamete formation. Here, we show that RAD-51 foci, which form at the sites of programmed meiotic DNA double-strand breaks (DSBs), exhibit a biased distribution toward off-centered positions along the chromosomes in wild-type Caenorhabditis elegans, and we identify two meiotic roles for chromatin-associated protein HIM-17 that ensure normal chromosome remodeling in late prophase I. During early prophase I, HIM-17 regulates the distribution of DSB-dependent RAD-51 foci and crossovers on chromosomes, which is critical for the formation of distinct chromosome subdomains (short and long arms of the bivalents) later during chromosome remodeling. During late prophase I, HIM-17 promotes the normal expression and localization of protein phosphatases GSP-1/2 to the surface of the bivalent chromosomes and may promote GSP-1 phosphorylation, thereby antagonizing Aurora B kinase AIR-2 loading on the long arms and preventing premature loss of sister chromatid cohesion. We propose that HIM-17 plays distinct roles at different stages during meiotic progression that converge to promote normal chromosome remodeling and accurate chromosome segregation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiose/fisiologia , Recombinação Genética/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Segregação de Cromossomos/genética , Cromossomos/metabolismo , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Rad51 Recombinase/metabolismo , Recombinação Genética/genética
15.
PLoS Genet ; 17(7): e1009650, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288923

RESUMO

Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Divisão Celular/genética , Proliferação de Células/genética , Larva/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/genética , Ativação Transcricional/genética , Zigoto/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507987

RESUMO

The formation of the branched actin networks is essential for cell polarity, but it remains unclear how the debranching activity of actin filaments contributes to this process. Here, we showed that an evolutionarily conserved coronin family protein, the Caenorhabditis elegans POD-1, debranched the Arp2/3-nucleated actin filaments in vitro. By fluorescence live imaging analysis of the endogenous POD-1 protein, we found that POD-1 colocalized with Arp2/3 at the leading edge of the migrating C. elegans neuroblasts. Conditional mutations of POD-1 in neuroblasts caused aberrant actin assembly, disrupted cell polarity, and impaired cell migration. In C. elegans one-cell-stage embryos, POD-1 and Arp2/3, moved together during cell polarity establishment, and inhibition of POD-1 blocked Arp2/3 motility and affected the polarized cortical flow, leading to symmetric segregation of cell fate determinants. Together, these results indicate that F-actin debranching organizes actin network and cell polarity in migrating neuroblasts and asymmetrically dividing embryos.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Divisão Celular Assimétrica/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/fisiologia , Proteínas dos Microfilamentos/fisiologia , Células-Tronco Neurais/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34433664

RESUMO

The trace element zinc is essential for many aspects of physiology. The mitochondrion is a major Zn2+ store, and excessive mitochondrial Zn2+ is linked to neurodegeneration. How mitochondria maintain their Zn2+ homeostasis is unknown. Here, we find that the SLC-30A9 transporter localizes on mitochondria and is required for export of Zn2+ from mitochondria in both Caenorhabditis elegans and human cells. Loss of slc-30a9 leads to elevated Zn2+ levels in mitochondria, a severely swollen mitochondrial matrix in many tissues, compromised mitochondrial metabolic function, reductive stress, and induction of the mitochondrial stress response. SLC-30A9 is also essential for organismal fertility and sperm activation in C. elegans, during which Zn2+ exits from mitochondria and acts as an activation signal. In slc-30a9-deficient neurons, misshapen mitochondria show reduced distribution in axons and dendrites, providing a potential mechanism for the Birk-Landau-Perez cerebrorenal syndrome where an SLC30A9 mutation was found.


Assuntos
Proteínas de Transporte de Cátions/farmacologia , Proteínas de Ciclo Celular/farmacologia , Mitocôndrias/metabolismo , Fatores de Transcrição/farmacologia , Zinco/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Transporte de Cátions/genética , Proteínas de Ciclo Celular/genética , Dendritos/metabolismo , Feminino , Técnicas de Inativação de Genes , Células HeLa , Homeostase , Humanos , Masculino , Potencial da Membrana Mitocondrial , Mutação , Espermatozoides/fisiologia , Fatores de Transcrição/genética
18.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361149

RESUMO

Acetylcholine (ACh) promotes various cell migrations in vitro, but there are few investigations into this nonsynaptic role of ACh signaling in vivo. Here we investigate the function of a muscarinic receptor on an epithelial cell migration in Caenorhabditis elegans We show that the migratory gonad leader cell, the linker cell (LC), uses an M1/M3/M5-like muscarinic ACh receptor GAR-3 to receive extrasynaptic ACh signaling from cholinergic neurons for its migration. Either the loss of the GAR-3 receptor in the LC or the inhibition of ACh release from cholinergic neurons resulted in migratory path defects. The overactivation of the GAR-3 muscarinic receptor caused the LC to reverse its orientation through its downstream effectors Gαq/egl-30, PLCß/egl-8, and TRIO/unc-73 This reversal response only occurred in the fourth larval stage, which corresponds to the developmental time when the GAR-3::yellow fluorescent protein receptor in the membrane relocalizes from a uniform to an asymmetric distribution. These findings suggest a role for the GAR-3 muscarinic receptor in determining the direction of LC migration.


Assuntos
Acetilcolina/metabolismo , Movimento Celular/fisiologia , Receptores Muscarínicos/metabolismo , Acetilcolina/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Células Epiteliais/metabolismo , Contração Muscular/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores Muscarínicos/fisiologia , Transdução de Sinais
19.
PLoS Genet ; 17(2): e1009346, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524034

RESUMO

Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Etanol/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Humanos , Locomoção/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Mutação , Neuropeptídeos/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972423

RESUMO

GABAergic neurotransmission constitutes a major inhibitory signaling mechanism that plays crucial roles in central nervous system physiology and immune cell immunomodulation. However, its roles in innate immunity remain unclear. Here, we report that deficiency in the GABAergic neuromuscular junctions (NMJs) of Caenorhabditis elegans results in enhanced resistance to pathogens, whereas pathogen infection enhances the strength of GABAergic transmission. GABAergic synapses control innate immunity in a manner dependent on the FOXO/DAF-16 but not the p38/PMK-1 pathway. Our data reveal that the insulin-like peptide INS-31 level was dramatically decreased in the GABAergic NMJ GABAAR-deficient unc-49 mutant compared with wild-type animals. C. elegans with ins-31 knockdown or loss of function exhibited enhanced resistance to Pseudomonas aeruginosa PA14 exposure. INS-31 may act downstream of GABAergic NMJs and in body wall muscle to control intestinal innate immunity in a cell-nonautonomous manner. Our results reveal a signaling axis of synapse-muscular insulin-intestinal innate immunity in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Insulina/imunologia , Intestinos/imunologia , Receptores de GABA-A/imunologia , Sinapses/imunologia , Adulto , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Neurônios GABAérgicos/imunologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Insulina/metabolismo , Intestinos/microbiologia , Intestinos/fisiologia , Mutação , Junção Neuromuscular/imunologia , Junção Neuromuscular/microbiologia , Junção Neuromuscular/fisiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/fisiologia , Transdução de Sinais/imunologia , Sinapses/microbiologia , Sinapses/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/imunologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA