Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(9): e105853, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555040

RESUMO

p97ATPase-mediated membrane fusion is required for the biogenesis of the Golgi complex. p97 and its cofactor p47 function in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) priming, but the tethering complex for p97/p47-mediated membrane fusion remains unknown. In this study, we identified formiminotransferase cyclodeaminase (FTCD) as a novel p47-binding protein. FTCD mainly localizes to the Golgi complex and binds to either p47 or p97 via its association with their polyglutamate motifs. FTCD functions in p97/p47-mediated Golgi reassembly at mitosis in vivo and in vitro via its binding to p47 and to p97. We also showed that FTCD, p47, and p97 form a big FTCD-p97/p47-FTCD tethering complex. In vivo tethering assay revealed that FTCD that was designed to localize to mitochondria caused mitochondria aggregation at mitosis by forming a complex with endogenous p97 and p47, which support a role for FTCD in tethering biological membranes in cooperation with the p97/p47 complex. Therefore, FTCD is thought to act as a tethering factor by forming the FTCD-p97/p47-FTCD complex in p97/p47-mediated Golgi membrane fusion.


Assuntos
Amônia-Liases/metabolismo , Glutamato Formimidoiltransferase/metabolismo , Complexo de Golgi/metabolismo , Enzimas Multifuncionais/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/metabolismo , Amônia-Liases/química , Sítios de Ligação , Glutamato Formimidoiltransferase/química , Células HeLa , Células Hep G2 , Humanos , Fusão de Membrana , Mitocôndrias , Mitose , Enzimas Multifuncionais/química , Complexos Multiproteicos/metabolismo , Ligação Proteica
2.
Biophys J ; 121(18): 3370-3380, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016497

RESUMO

Complexin-1 is an essential protein for neuronal exocytosis that acts to depress spontaneous fusion events while enhancing evoked neurotransmitter release. In addition to binding soluble N-ethylmaleimide-sensitive factor attachment protein receptors, it is well established that complexin associates with membranes in a manner that depends upon membrane curvature. In the present work, we examine the membrane binding of complexin using electron paramagnetic resonance spectroscopy, fluorescence anisotropy, and total internal reflection fluorescence microscopy. The apparent membrane affinity of complexin is found to strongly depend upon the concentration of protein used in the binding assay, and this is a result of a limited number of binding sites for complexin on the membrane interface. Although both the N- and C-terminal regions of complexin associate with the membrane interface, membrane affinity is driven by its C-terminus. Complexin prefers to bind liquid-disordered membrane phases and shows an enhanced affinity toward membranes containing phosphatidylinositol 4-5-bisphosphate (PI(4,5)P2). In the presence of PI(4,5)P2, complexin is displaced from the membrane surface by proteins that bind to or sequester PI(4,5)P2. In particular, the neuronal calcium sensor synaptotagmin-1 displaces complexin from the membrane but only when PI(4,5)P2 is present. Complexin and synaptotagmin compete on the membrane interface in the presence of PI(4,5)P2, and this interaction may play a role in calcium-triggered exocytosis by displacing complexin from its fusion-inhibiting state.


Assuntos
Cálcio , Fosfatidilinositol 4,5-Difosfato , Proteínas Adaptadoras de Transporte Vesicular/química , Sítios de Ligação , Cálcio/metabolismo , Exocitose , Proteínas do Tecido Nervoso/química , Neurotransmissores , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Sinaptotagmina I/química
3.
Handb Exp Pharmacol ; 271: 83-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33404775

RESUMO

We reported previously that GEC1 (glandular epithelial cell 1), a member of microtubule-associated proteins (MAPs), interacted directly with the C-tail of KOR (KCT) and tubulin and enhanced cell surface expression of KOR in CHO cells by facilitating its trafficking along the export pathway. Two GEC1 analogs (GABARAP and GATE16) were also shown to increase KOR expression. In addition, to understand the underlying mechanism, we demonstrated that N-ethylmaleimide-sensitive factor (NSF), an essential component for membrane fusion, co-immunoprecipitated with GEC1 from brain extracts. In this study, using pull-down techniques, we have found that (1) GEC1 interacts with NSF directly and prefers the ADP-bound NSF to the ATP-bound NSF; (2) D1 and/or D2 domain(s) of NSF interact with GEC1, but the N domain of NSF does not; (3) NSF does not interact with KCT directly, but forms a protein complex with KCT via GEC1; (4) NSF and/or α-SNAP do not affect KCT-GEC1 interaction. Thus, GEC1 (vs the α-SNAP/SNAREs complex) binds to NSF in distinctive ways in terms of the ADP- or ATP-bound form and domains of NSF involved. In conclusion, GEC1 may, via its direct interactions with KOR, NSF, and tubulin, enhance trafficking and fusion of KOR-containing vesicles selectively along the export pathway, which leads to increase in surface expression of KOR. GABARAP and GATE16 may enhance KOR expression in a similar way.


Assuntos
Proteínas Associadas aos Microtúbulos , Receptores Opioides kappa , Animais , Cricetinae , Cricetulus , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
4.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33229367

RESUMO

Chlamydia trachomatis, an obligate intracellular pathogen, undergoes a biphasic developmental cycle within a membrane-bound vacuole called the chlamydial inclusion. To facilitate interactions with the host cell, Chlamydia modifies the inclusion membrane with type III secreted proteins, called Incs. As with all chlamydial proteins, Incs are temporally expressed, modifying the chlamydial inclusion during the early and mid-developmental cycle. VAMP3 and VAMP4 are eukaryotic SNARE proteins that mediate membrane fusion and are recruited to the inclusion to facilitate inclusion expansion. Their recruitment requires de novo chlamydial protein synthesis during the mid-developmental cycle. Thus, we hypothesize that VAMP3 and VAMP4 are recruited by Incs. In chlamydia-infected cells, identifying Inc binding partners for SNARE proteins specifically has been elusive. To date, most studies examining chlamydial Inc and eukaryotic proteins have benefitted from stable interacting partners or a robust interaction at a specific time postinfection. While these types of interactions are the predominant class that have been identified, they are likely the exception to chlamydia-host interactions. Therefore, we applied two separate but complementary experimental systems to identify candidate chlamydial Inc binding partners for VAMPs. Based on these results, we created transformed strains of C. trachomatis serovar L2 to inducibly express a candidate Inc-FLAG protein. In chlamydia-infected cells, we found that five Incs temporally and transiently interact with VAMP3. Further, loss of incA or ct813 expression altered VAMP3 localization to the inclusion. For the first time, our studies demonstrate the transient nature of certain host protein-Inc interactions that contribute to the chlamydial developmental cycle.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Corpos de Inclusão/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Virulência/fisiologia , Infecções por Chlamydia/fisiopatologia , Humanos , Estados Unidos
5.
Development ; 145(11)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891564

RESUMO

All animals must coordinate growth rate and timing of maturation to reach the appropriate final size. Here, we describe hobbit, a novel and conserved gene identified in a forward genetic screen for Drosophila animals with small body size. hobbit is highly conserved throughout eukaryotes, but its function remains unknown. We demonstrate that hobbit mutant animals have systemic growth defects because they fail to secrete insulin. Other regulated secretion events also fail in hobbit mutant animals, including mucin-like 'glue' protein secretion from the larval salivary glands. hobbit mutant salivary glands produce glue-containing secretory granules that are reduced in size. Importantly, secretory granules in hobbit mutant cells lack essential membrane fusion machinery required for exocytosis, including Synaptotagmin 1 and the SNARE SNAP-24. These membrane fusion proteins instead accumulate inside enlarged late endosomes. Surprisingly, however, the Hobbit protein localizes to the endoplasmic reticulum. Our results suggest that Hobbit regulates a novel step in intracellular trafficking of membrane fusion proteins. Our studies also suggest that genetic control of body size, as a measure of insulin secretion, is a sensitive functional readout of the secretory machinery.


Assuntos
Tamanho Corporal/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Insulina/metabolismo , Proteínas de Fusão de Membrana/metabolismo , Glândulas Salivares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Proteínas do Grude Salivar de Drosophila/genética , Proteínas do Grude Salivar de Drosophila/metabolismo , Secreção de Insulina , Tamanho do Órgão/genética , Transporte Proteico/genética , Vesículas Secretórias/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Sinaptotagmina I/metabolismo , Proteínas de Transporte Vesicular/genética
6.
Nature ; 518(7537): 61-7, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25581794

RESUMO

Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cricetulus , Microscopia Crioeletrônica , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas SNARE/ultraestrutura , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 115(19): E4512-E4521, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29695628

RESUMO

N-ethylmaleimide sensitive factor (NSF) and α-soluble NSF attachment protein (α-SNAP) are essential eukaryotic housekeeping proteins that cooperatively function to sustain vesicular trafficking. The "resistance to Heterodera glycines 1" (Rhg1) locus of soybean (Glycine max) confers resistance to soybean cyst nematode, a highly damaging soybean pest. Rhg1 loci encode repeat copies of atypical α-SNAP proteins that are defective in promoting NSF function and are cytotoxic in certain contexts. Here, we discovered an unusual NSF allele (Rhg1-associated NSF on chromosome 07; NSFRAN07 ) in Rhg1+ germplasm. NSFRAN07 protein modeling to mammalian NSF/α-SNAP complex structures indicated that at least three of the five NSFRAN07 polymorphisms reside adjacent to the α-SNAP binding interface. NSFRAN07 exhibited stronger in vitro binding with Rhg1 resistance-type α-SNAPs. NSFRAN07 coexpression in planta was more protective against Rhg1 α-SNAP cytotoxicity, relative to WT NSFCh07 Investigation of a previously reported segregation distortion between chromosome 18 Rhg1 and a chromosome 07 interval now known to contain the Glyma.07G195900 NSF gene revealed 100% coinheritance of the NSFRAN07 allele with disease resistance Rhg1 alleles, across 855 soybean accessions and in all examined Rhg1+ progeny from biparental crosses. Additionally, we show that some Rhg1-mediated resistance is associated with depletion of WT α-SNAP abundance via selective loss of WT α-SNAP loci. Hence atypical coevolution of the soybean SNARE-recycling machinery has balanced the acquisition of an otherwise disruptive housekeeping protein, enabling a valuable disease resistance trait. Our findings further indicate that successful engineering of Rhg1-related resistance in plants will require a compatible NSF partner for the resistance-conferring α-SNAP.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glycine max/crescimento & desenvolvimento , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Nematoides/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Interações Hospedeiro-Parasita , Proteínas Sensíveis a N-Etilmaleimida/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitologia
8.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360842

RESUMO

IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.


Assuntos
Demência Frontotemporal/metabolismo , Modelos Moleculares , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Miosite de Corpos de Inclusão/metabolismo , Osteíte Deformante/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/genética , Demência Frontotemporal/genética , Humanos , Microscopia Eletrônica de Transmissão , Distrofia Muscular do Cíngulo dos Membros/genética , Miosite de Corpos de Inclusão/genética , Osteíte Deformante/genética , Conformação Proteica , Proteína com Valosina/metabolismo
9.
J Cell Sci ; 131(23)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30404830

RESUMO

How vesicle trafficking components actively contribute to regulation of paracrine signaling is unclear. We genetically uncovered a requirement for α-soluble NSF attachment protein (α-Snap) in the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway during Drosophila egg development. α-Snap, a well-conserved vesicle trafficking regulator, mediates association of N-ethylmaleimide-sensitive factor (NSF) and SNAREs to promote vesicle fusion. Depletion of α-Snap or the SNARE family member Syntaxin1A in epithelia blocks polar cells maintenance and prevents specification of motile border cells. Blocking apoptosis rescues polar cell maintenance in α-Snap-depleted egg chambers, indicating that the lack of border cells in mutants is due to impaired signaling. Genetic experiments implicate α-Snap and NSF in secretion of a STAT-activating cytokine. Live imaging suggests that changes in intracellular Ca2+ are linked to this event. Our data suggest a cell-type specific requirement for particular vesicle trafficking components in regulated exocytosis during development. Given the central role for STAT signaling in immunity, this work may shed light on regulation of cytokine release in humans.


Assuntos
Citocinas/metabolismo , Exocitose/fisiologia , Janus Quinases/metabolismo , Ovário/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Drosophila , Feminino , Transdução de Sinais
10.
PLoS Genet ; 13(4): e1006698, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28403141

RESUMO

The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes.


Assuntos
Membrana Celular/genética , Proteínas de Drosophila/genética , Proteínas R-SNARE/genética , Proteínas SNARE/genética , Proteína 3 Associada à Membrana da Vesícula/genética , Animais , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Heterozigoto , Humanos , Fusão de Membrana/genética , Transporte Proteico/genética , Proteínas R-SNARE/metabolismo , Interferência de RNA , Proteínas SNARE/metabolismo , Toxina Shiga I/genética , Toxina Shiga I/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(48): 12749-12754, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29138318

RESUMO

Autophagy, a unique intracellular membrane-trafficking pathway, is initiated by the formation of an isolation membrane (phagophore) that engulfs cytoplasmic constituents, leading to generation of the autophagosome, a double-membrane vesicle, which is targeted to the lysosome. The outer autophagosomal membrane consequently fuses with the lysosomal membrane. Multiple membrane-fusion events mediated by SNARE molecules have been postulated to promote autophagy. αSNAP, the adaptor molecule for the SNARE-priming enzyme N-ethylmaleimide-sensitive factor (NSF) is known to be crucial for intracellular membrane fusion processes, but its role in autophagy remains unclear. Here we demonstrated that knockdown of αSNAP leads to inhibition of autophagy, manifested by an accumulation of sealed autophagosomes located in close proximity to lysosomes but not fused with them. Under these conditions, moreover, association of both Atg9 and the autophagy-related SNARE protein syntaxin17 with the autophagosome remained unaffected. Finally, our results suggested that under starvation conditions, the levels of αSNAP, although low, are nevertheless sufficient to partially promote the SNARE priming required for autophagy. Taken together, these findings indicate that while autophagosomal-lysosomal membrane fusion is sensitive to inhibition of SNARE priming, the initial stages of autophagosome biogenesis and autophagosome expansion remain resistant to its loss.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas Qa-SNARE/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Transporte Vesicular/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Fusão de Membrana , Proteínas de Membrana/metabolismo , Biogênese de Organelas , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
J Cell Sci ; 130(7): 1285-1298, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202687

RESUMO

In dendritic cells, the NADPH oxidase 2 complex (NOX2) is recruited to the phagosomal membrane during antigen uptake. NOX2 produces reactive oxygen species (ROS) in the lumen of the phagosome that kill ingested pathogens, delay antigen breakdown and alter the peptide repertoire for presentation to T cells. How the integral membrane component of NOX2, cytochrome b558 (which comprises CYBB and CYBA), traffics to phagosomes is incompletely understood. In this study, we show in dendritic cells derived from human blood-isolated monocytes that cytochrome b558 is initially recruited to the phagosome from the plasma membrane during phagosome formation. Cytochrome b558 also traffics from a lysosomal pool to phagosomes and this is required to replenish oxidatively damaged NOX2. We identified syntaxin-7, SNAP23 and VAMP8 as the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediating this process. Our data describe a key mechanism of how dendritic cells sustain ROS production after antigen uptake that is required to initiate T cell responses.


Assuntos
Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Fagossomos/metabolismo , Compartimento Celular , Membrana Celular/metabolismo , Grupo dos Citocromos b/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Membranas Intracelulares/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Modelos Biológicos , NADPH Oxidase 2 , Oxirredução , Fosfatidilinositóis/metabolismo , Proteínas Qa-SNARE , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(47): E7375-E7382, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821740

RESUMO

α-SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] and NSF proteins are conserved across eukaryotes and sustain cellular vesicle trafficking by mediating disassembly and reuse of SNARE protein complexes, which facilitate fusion of vesicles to target membranes. However, certain haplotypes of the Rhg1 (resistance to Heterodera glycines 1) locus of soybean possess multiple repeat copies of an α-SNAP gene (Glyma.18G022500) that encodes atypical amino acids at a highly conserved functional site. These Rhg1 loci mediate resistance to soybean cyst nematode (SCN; H. glycines), the most economically damaging pathogen of soybeans worldwide. Rhg1 is widely used in agriculture, but the mechanisms of Rhg1 disease resistance have remained unclear. In the present study, we found that the resistance-type Rhg1 α-SNAP is defective in interaction with NSF. Elevated in planta expression of resistance-type Rhg1 α-SNAPs depleted the abundance of SNARE-recycling 20S complexes, disrupted vesicle trafficking, induced elevated abundance of NSF, and caused cytotoxicity. Soybean, due to ancient genome duplication events, carries other loci that encode canonical (wild-type) α-SNAPs. Expression of these α-SNAPs counteracted the cytotoxicity of resistance-type Rhg1 α-SNAPs. For successful growth and reproduction, SCN dramatically reprograms a set of plant root cells and must sustain this sedentary feeding site for 2-4 weeks. Immunoblots and electron microscopy immunolocalization revealed that resistance-type α-SNAPs specifically hyperaccumulate relative to wild-type α-SNAPs at the nematode feeding site, promoting the demise of this biotrophic interface. The paradigm of disease resistance through a dysfunctional variant of an essential gene may be applicable to other plant-pathogen interactions.


Assuntos
Resistência à Doença , Glycine max/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Mutação , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitologia
14.
Proc Natl Acad Sci U S A ; 113(38): 10536-41, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601655

RESUMO

Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.


Assuntos
Complexos Multiproteicos/genética , Proteínas SNARE/genética , Transmissão Sináptica/genética , Proteína 2 Associada à Membrana da Vesícula/genética , Animais , Fenômenos Biofísicos , Fusão de Membrana/genética , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ratos , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo
15.
Traffic ; 17(2): 102-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26566590

RESUMO

Upon infection, apicomplexan parasites quickly invade host cells and begin a replicative cycle rapidly increasing in number over a short period of time, leading to tissue lysis and disease. The secretory pathway of these highly polarized protozoan parasites tightly controls, in time and space, the biogenesis of specialized structures and organelles required for invasion and intracellular survival. In other systems, regulation of protein trafficking can occur by phosphorylation of vesicle fusion machinery. Previously, we have shown that Toxoplasma gondii αSNAP - a protein that controls the disassembly of cis-SNARE complexes--is phosphorylated. Here, we show that this post-translational modification is required for the correct function of αSNAP in controlling secretory traffic. We demonstrate that during intracellular development conditional expression of a non-phosphorylatable form of αSNAP results in Golgi fragmentation and vesiculation of all downstream secretory organelles. In addition, we show that the vestigial plastid (termed apicoplast), although reported not to be reliant on Golgi trafficking for biogenesis, is also affected upon overexpression of αSNAP and is much more sensitive to the levels of this protein than targeting to other organelles. This work highlights the importance of αSNAP and its phosphorylation in Toxoplasma organelle biogenesis and exposes a hereto fore-unexplored mechanism of regulation of vesicle fusion during secretory pathway trafficking in apicomplexan parasites.


Assuntos
Organelas/metabolismo , Fosforilação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Via Secretória/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Toxoplasma/metabolismo , Complexo de Golgi/fisiologia , Biogênese de Organelas , Organelas/fisiologia , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia
16.
Proc Natl Acad Sci U S A ; 112(18): E2290-7, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902545

RESUMO

Sec17 [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein; α-SNAP] and Sec18 (NSF) perform ATP-dependent disassembly of cis-SNARE complexes, liberating SNAREs for subsequent assembly of trans-complexes for fusion. A mutant of Sec17, with limited ability to stimulate Sec18, still strongly enhanced fusion when ample Sec18 was supplied, suggesting that Sec17 has additional functions. We used fusion reactions where the four SNAREs were initially separate, thus requiring no disassembly by Sec18. With proteoliposomes bearing asymmetrically disposed SNAREs, tethering and trans-SNARE pairing allowed slow fusion. Addition of Sec17 did not affect the levels of trans-SNARE complex but triggered sudden fusion of trans-SNARE paired proteoliposomes. Sec18 did not substitute for Sec17 in triggering fusion, but ADP- or ATPγS-bound Sec18 enhanced this Sec17 function. The extent of the Sec17 effect varied with the lipid headgroup and fatty acyl composition of the proteoliposomes. Two mutants further distinguished the two Sec17 functions: Sec17(L291A,L292A) did not stimulate Sec18 to disassemble cis-SNARE complex but triggered the fusion of trans-SNARE paired membranes. Sec17(F21S,M22S), with diminished apolar character to its hydrophobic loop, fully supported Sec18-mediated SNARE complex disassembly but had lost the capacity to stimulate the fusion of trans-SNARE paired membranes. To model the interactions of SNARE-bound Sec17 with membranes, we show that Sec17, but not Sec17(F21S,M22S), interacted synergistically with the soluble SNARE domains to enable their stable association with liposomes. We propose a model in which Sec17 binds to trans-SNARE complexes, oligomerizes, and inserts apolar loops into the apposed membranes, locally disturbing the lipid bilayer and thereby lowering the energy barrier for fusion.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas SNARE/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/química , Bicamadas Lipídicas/química , Lipídeos/química , Lipossomos/química , Fusão de Membrana , Mutação , Ligação Proteica , Proteolipídeos/química , Saccharomyces cerevisiae/metabolismo
17.
Int J Mol Sci ; 19(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562663

RESUMO

BK polyomavirus (BKPyV; hereafter referred to as BK) causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF) attachment protein (α-SNAP) is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.


Assuntos
Vírus BK/fisiologia , Infecções por Polyomavirus/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Vírus BK/genética , Vírus BK/ultraestrutura , Núcleo Celular/metabolismo , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Membrana Nuclear/metabolismo , Ligação Proteica , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Transcrição Gênica , Células Vero , Vírion/metabolismo , Vírion/ultraestrutura
18.
Biochem Biophys Res Commun ; 486(4): 951-957, 2017 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-28359759

RESUMO

A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo.


Assuntos
Diferenciação Celular/fisiologia , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos
19.
Glia ; 64(3): 440-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26539695

RESUMO

The spatial organization of vascular endothelial growth factor (VEGF) signaling is a key determinant of vascular patterning during development and tissue repair. How VEGF signaling becomes spatially restricted and the role of VEGF secreting astrocytes in this process remains poorly understood. Using a VEGF-GFP fusion protein and confocal time-lapse microscopy, we observed the intracellular routing, secretion and immobilization of VEGF in scratch-activated living astrocytes. We found VEGF to be directly transported to cell-extracellular matrix attachments where it is incorporated into fibronectin fibrils. VEGF accumulated at ß1 integrin containing fibrillar adhesions and was translocated along the cell surface prior to internalization and degradation. We also found that only the astrocyte-derived, matrix-bound, and not soluble VEGF decreases ß1 integrin turnover in fibrillar adhesions. We suggest that polarized VEGF release and ECM remodeling by VEGF secreting cells is key to control the local concentration and signaling of VEGF. Our findings highlight the importance of astrocytes in directing VEGF functions and identify these mechanisms as promising target for angiogenic approaches.


Assuntos
Astrócitos/metabolismo , Polaridade Celular/fisiologia , Matriz Extracelular/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/ultraestrutura , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrazonas/metabolismo , Antígeno Ki-67/metabolismo , Microscopia Confocal , Neurônios/metabolismo , Fotodegradação , Puromicina/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Fatores de Tempo , Transfecção
20.
Cell Microbiol ; 17(6): 767-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25488819

RESUMO

Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella-containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non-eukaryotic soluble NSF attachment protein receptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc-SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa-, Qb- and R-SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi-associated pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Mimetismo Molecular , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Macrófagos/microbiologia , Camundongos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA