Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.626
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 261-287, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621236

RESUMO

Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas rab de Ligação ao GTP , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Fosforilação , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/química , Animais , Transdução de Sinais , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/química , Ligação Proteica , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/química
2.
Cell ; 184(1): 92-105.e16, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33147445

RESUMO

To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these gene targets using several orthogonal methods such as CRISPR knockout, RNA interference knockdown, and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor in the early stages of viral entry, we show that loss of RAB7A reduces viral entry by sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the loss of each host gene on fitness/response to viral infection.


Assuntos
COVID-19/genética , COVID-19/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Células A549 , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Vias Biossintéticas , COVID-19/metabolismo , Colesterol/biossíntese , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endossomos/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes/métodos , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferência de RNA , SARS-CoV-2/crescimento & desenvolvimento , Análise de Célula Única , Carga Viral/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
3.
Cell ; 176(1-2): 56-72.e15, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30612743

RESUMO

Local translation regulates the axonal proteome, playing an important role in neuronal wiring and axon maintenance. How axonal mRNAs are localized to specific subcellular sites for translation, however, is not understood. Here we report that RNA granules associate with endosomes along the axons of retinal ganglion cells. RNA-bearing Rab7a late endosomes also associate with ribosomes, and real-time translation imaging reveals that they are sites of local protein synthesis. We show that RNA-bearing late endosomes often pause on mitochondria and that mRNAs encoding proteins for mitochondrial function are translated on Rab7a endosomes. Disruption of Rab7a function with Rab7a mutants, including those associated with Charcot-Marie-Tooth type 2B neuropathy, markedly decreases axonal protein synthesis, impairs mitochondrial function, and compromises axonal viability. Our findings thus reveal that late endosomes interact with RNA granules, translation machinery, and mitochondria and suggest that they serve as sites for regulating the supply of nascent pro-survival proteins in axons.


Assuntos
Endossomos/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Axônios/metabolismo , Endossomos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/fisiologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Ribossomos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/fisiologia , proteínas de unión al GTP Rab7
4.
Nat Rev Mol Cell Biol ; 22(11): 733-750, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302147

RESUMO

Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.


Assuntos
Autofagossomos/genética , Autofagia/genética , Doenças Neurodegenerativas/genética , Vesículas Transportadoras/genética , Endossomos/genética , Humanos , Lisossomos/genética , Doenças Neurodegenerativas/patologia , Fagossomos/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas SNARE/genética , Proteínas rab de Ligação ao GTP/genética
5.
Annu Rev Biochem ; 85: 685-713, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26865532

RESUMO

Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas SNARE/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Citoesqueleto/química , Citoesqueleto/metabolismo , Endocitose , Humanos , Lisossomos/metabolismo , Mamíferos , Modelos Moleculares , Fagossomos/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética
6.
Cell ; 164(1-2): 141-155, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26774822

RESUMO

The DENN domain is an evolutionary conserved protein module found in all eukaryotes and serves as an exchange factor for Rab-GTPases to regulate diverse cellular functions. Variants in DENND1B are associated with development of childhood asthma and other immune disorders. To understand how DENND1B may contribute to human disease, Dennd1b(-/-) mice were generated and exhibit hyper-allergic responses following antigen challenge. Dennd1b(-/-) TH2, but not other TH cells, exhibit delayed receptor-induced T cell receptor (TCR) downmodulation, enhanced TCR signaling, and increased production of effector cytokines. As DENND1B interacts with AP-2 and Rab35, TH2 cells deficient in AP-2 or Rab35 also exhibit enhanced TCR-mediated effector functions. Moreover, human TH2 cells carrying asthma-associated DENND1B variants express less DENND1B and phenocopy Dennd1b(-/-) TH2 cells. These results provide a molecular basis for how DENND1B, a previously unrecognized regulator of TCR downmodulation in TH2 cells, contributes to asthma pathogenesis and how DENN-domain-containing proteins may contribute to other human disorders.


Assuntos
Asma/imunologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Células Th2/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Hipersensibilidade/imunologia , Ativação Linfocitária , Camundongos , Polimorfismo de Nucleotídeo Único , Células Th2/metabolismo , Proteínas rab de Ligação ao GTP/genética
7.
Nature ; 617(7962): 764-768, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198478

RESUMO

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Assuntos
COVID-19 , Estado Terminal , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Técnicas de Genotipagem , Monócitos/metabolismo , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Transcriptoma , Sequenciamento Completo do Genoma
8.
EMBO J ; 43(15): 3141-3174, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877304

RESUMO

Migrating cells preferentially breach and integrate epithelial and endothelial monolayers at multicellular vertices. These sites are amenable to forces produced by the migrating cell and subsequent opening of the junctions. However, the cues that guide migrating cells to these entry portals, and eventually drive the transmigration process, are poorly understood. Here, we show that lymphatic endothelium multicellular junctions are the preferred sites of dendritic cell transmigration in both primary cell co-cultures and in mouse dermal explants. Dendritic cell guidance to multicellular junctions was dependent on the dendritic cell receptor CCR7, whose ligand, lymphatic endothelial chemokine CCL21, was exocytosed at multicellular junctions. Characterization of lymphatic endothelial secretory routes indicated Golgi-derived RAB6+ vesicles and RAB3+/27+ dense core secretory granules as intracellular CCL21 storage vesicles. Of these, RAB6+ vesicles trafficked CCL21 to the multicellular junctions, which were enriched with RAB6 docking factor ELKS (ERC1). Importantly, inhibition of RAB6 vesicle exocytosis attenuated dendritic cell transmigration. These data exemplify how spatially-restricted exocytosis of guidance cues helps to determine where dendritic cells transmigrate.


Assuntos
Quimiocina CCL21 , Células Dendríticas , Exocitose , Receptores CCR7 , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Quimiocina CCL21/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células Dendríticas/metabolismo , Receptores CCR7/metabolismo , Receptores CCR7/genética , Junções Intercelulares/metabolismo , Migração Transendotelial e Transepitelial , Endotélio Linfático/metabolismo , Endotélio Linfático/citologia , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Técnicas de Cocultura , Células Cultivadas , Movimento Celular
9.
EMBO J ; 43(18): 3948-3967, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103493

RESUMO

Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.


Assuntos
Aminoácidos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Serina-Treonina Quinases , proteínas de unión al GTP Rab7 , Humanos , Aminoácidos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Células HEK293 , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transdução de Sinais
10.
Genes Dev ; 34(7-8): 580-597, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115408

RESUMO

Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K-AKT-mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.


Assuntos
Transtorno Autístico/genética , Córtex Cerebral/embriologia , Megalencefalia/genética , Neurogênese/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Córtex Cerebral/citologia , Deleção de Genes , Humanos , Megalencefalia/fisiopatologia , Camundongos , Camundongos Knockout , Modelos Animais , Organoides/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
11.
Development ; 151(21)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39431301

RESUMO

Intestinal epithelial cells, which are instrumental in nutrient absorption, fluid regulation, and pathogen defense, undergo continuous proliferation and differentiation within the intestinal crypts, migrating towards the luminal surface where they are eventually shed. RAB GTPases are key regulators of intracellular vesicular trafficking and are involved in various cellular processes, including cell migration and polarity. Here, we investigated the role of RAB6 in the development and maintenance of the gut epithelium. We generated conditional knockout mice with RAB6 specifically deleted in the gut epithelium. We found that deletion of the Rab6a gene resulted in embryonic lethality. In adult mice, RAB6 depletion led to altered villus architecture and impaired junction integrity without affecting the segregation of apical and basolateral membrane domains. Further, RAB6 depletion slowed down cell migration and adversely affected both cell proliferation and stem cell maintenance. Notably, the absence of RAB6 resulted in a diminished number of functional stem cells, as evidenced by the rapid death of isolated crypts from Rab6a KO mice when cultured as 3D organoids. Together, these results underscore the essential role of RAB6 in maintaining gut epithelial homeostasis.


Assuntos
Movimento Celular , Proliferação de Células , Mucosa Intestinal , Camundongos Knockout , Células-Tronco , Proteínas rab de Ligação ao GTP , Animais , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Camundongos , Polaridade Celular/genética , Diferenciação Celular , Organoides/metabolismo , Organoides/citologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia
12.
Nat Immunol ; 16(9): 918-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237551

RESUMO

Mucosal immunity protects a host from intestinal inflammation and infection and is profoundly influenced by symbiotic bacteria. Here we report that in mice symbiotic bacteria directed selective cargo sorting in Paneth cells to promote symbiosis through Nod2, a cytosolic bacterial sensor, and the multifunctional protein kinase LRRK2, both encoded by inflammatory bowel disease (IBD)-associated genes. Commensals recruited Nod2 onto lysozyme-containing dense core vesicles (DCVs), which was required for DCV localization of LRRK2 and a small GTPase, Rab2a. Deficiency of Nod2, LRRK2 or Rab2a or depletion of commensals resulted in lysosomal degradation of lysozyme. Thus, commensal bacteria and host factors orchestrate the lysozyme-sorting process to protect the host from enteric infection, implicating Paneth cell dysfunction in IBD pathogenesis.


Assuntos
Enterocolite/imunologia , Imunidade nas Mucosas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Intestinos/imunologia , Listeriose/imunologia , Celulas de Paneth/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Simbiose/imunologia , Animais , Enterocolite/genética , Imunidade nas Mucosas/genética , Doenças Inflamatórias Intestinais/genética , Intestinos/microbiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Listeriose/genética , Lisossomos , Camundongos , Camundongos Knockout , Muramidase , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteínas Serina-Treonina Quinases/genética , Vesículas Secretórias/imunologia , Simbiose/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia
13.
PLoS Genet ; 20(2): e1011152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315726

RESUMO

Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.


Assuntos
Drosophila , Endossomos , Animais , Drosophila/genética , Drosophila/metabolismo , Endossomos/genética , Endossomos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Oócitos/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Mamíferos/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(30): e2319267121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008679

RESUMO

Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.


Assuntos
Caveolina 1 , Movimento Celular , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Caveolina 1/metabolismo , Caveolina 1/genética , Macrófagos/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Transporte Biológico , Cicatrização/fisiologia , Organelas/metabolismo
15.
Am J Hum Genet ; 110(12): 2103-2111, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37924809

RESUMO

Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C>T [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T>C [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome.


Assuntos
Haploinsuficiência , Paraplegia Espástica Hereditária , Criança , Humanos , Haploinsuficiência/genética , Mutação , Mutação de Sentido Incorreto/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Paraplegia Espástica Hereditária/genética
16.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37590130

RESUMO

Ingression of the plasma membrane is an essential part of the cell topology-distorting repertoire and a key element in animal cell cytokinesis. Many embryos have rapid cleavage stages in which they are furrowing powerhouses, quickly forming and disassembling cleavage furrows on timescales of just minutes. Previous work has shown that cytoskeletal proteins and membrane trafficking coordinate to drive furrow ingression, but where these membrane stores are derived from and how they are directed to furrowing processes has been less clear. Here, we identify an extensive Rab35/Rab4>Rab39/Klp98A>trans-Golgi network (TGN) endocytic recycling pathway necessary for fast furrow ingression in the Drosophila embryo. Rab39 is present in vesiculotubular compartments at the TGN where it receives endocytically derived cargo through a Rab35/Rab4-dependent pathway. A Kinesin-3 family member, Klp98A, drives the movements and tubulation activities of Rab39, and disruption of this Rab39-Klp98A-Rab35 pathway causes deep furrow ingression defects and genomic instability. These data suggest that an endocytic recycling pathway rapidly remobilizes membrane cargo from the cell surface and directs it to the trans-Golgi network to permit the initiation of new cycles of cleavage furrow formation.


Assuntos
Proteínas de Drosophila , Complexo de Golgi , Animais , Transporte Biológico , Membrana Celular , Rede trans-Golgi , Desenvolvimento Embrionário , Drosophila , Proteínas rab de Ligação ao GTP/genética , Proteínas de Drosophila/genética , Cinesinas
17.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607975

RESUMO

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Assuntos
Autofagia Mediada por Chaperonas , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Lipólise , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas de Membrana Lisossomal , RNA Interferente Pequeno
18.
Cell ; 145(1): 117-32, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21458671

RESUMO

Exchange of proteins at sorting endosomes is not only critical to numerous signaling pathways but also to receptor-mediated signaling and to pathogen entry into cells; however, how this process is regulated in synaptic vesicle cycling remains unexplored. In this work, we present evidence that loss of function of a single neuronally expressed GTPase activating protein (GAP), Skywalker (Sky) facilitates endosomal trafficking of synaptic vesicles at Drosophila neuromuscular junction boutons, chiefly by controlling Rab35 GTPase activity. Analyses of genetic interactions with the ESCRT machinery as well as chimeric ubiquitinated synaptic vesicle proteins indicate that endosomal trafficking facilitates the replacement of dysfunctional synaptic vesicle components. Consequently, sky mutants harbor a larger readily releasable pool of synaptic vesicles and show a dramatic increase in basal neurotransmitter release. Thus, the trafficking of vesicles via endosomes uncovered using sky mutants provides an elegant mechanism by which neurons may regulate synaptic vesicle rejuvenation and neurotransmitter release.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Mutação , Sistema Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Proteínas rab de Ligação ao GTP/genética
19.
PLoS Genet ; 19(10): e1010979, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844085

RESUMO

Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.


Assuntos
Proteínas de Drosophila , Exossomos , Animais , Humanos , Masculino , Vesículas de Núcleo Denso , Drosophila , Proteínas de Drosophila/genética , Exossomos/genética , Proteínas , Proteínas rab de Ligação ao GTP/genética , Fator de Transcrição AP-1
20.
Proc Natl Acad Sci U S A ; 120(44): e2315171120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37889931

RESUMO

PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated Rab GTPase phosphorylation. We show here that PPM1H relies on an N-terminal amphipathic helix for Golgi localization. The amphipathic helix enables PPM1H to bind to liposomes in vitro, and small, highly curved liposomes stimulate PPM1H activity. We artificially anchored PPM1H to the Golgi, mitochondria, or mother centriole. Our data show that regulation of Rab10 GTPase phosphorylation requires PPM1H access to Rab10 at or near the mother centriole. Moreover, poor colocalization of Rab12 explains in part why it is a poor substrate for PPM1H in cells but not in vitro. These data support a model in which localization drives PPM1H substrate selection and centriolar PPM1H is critical for regulation of Rab GTPase-regulated ciliogenesis. Moreover, Golgi localized PPM1H may maintain active Rab GTPases on the Golgi to carry out their nonciliogenesis-related functions in membrane trafficking.


Assuntos
Doença de Parkinson , Monoéster Fosfórico Hidrolases , Humanos , Fosforilação , Monoéster Fosfórico Hidrolases/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Lipossomos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Fosfoproteínas Fosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA