Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.347
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 733: 150350, 2024 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-39053107

RESUMO

Postovulatory aging of oocytes involves a series of deleterious molecular and cellular changes, which adversely affect oocyte maturation, fertilization, and early embryonic development. Petunidin-3-O-(6-O-pcoumaroyl)-rutinoside-5-O-glucoside (PrG), the main active ingredient of anthocyanin, exerts antioxidant effects. This study investigated whether PrG supplementation could delay postovulatory oocyte aging by alleviating oxidative stress. Our results showed that PrG supplementation decreased the number of abnormal morphology oocytes and improved the oxidative stress of aged oocytes by facilitating the reduction of the reactive oxygen species, the increase in glutathione content, and the recovery of expression of antioxidant-related gene expression. In addition, PrG treatment recovered mitochondrial dysfunction, including mitochondrial distribution, mitochondrial membrane potential and adenosine triphosphate in aged oocytes. PrG-treated oocytes returned to normal levels of cytoplasmic and mitochondrial calcium. Notably, PrG inhibited early apoptosis in aged oocytes. RNA-seq and qRT-PCR results revealed that PrG ameliorated oxidative stress injury in postovulatory aging oocytes of mice via the putrescine pathway. In conclusion, in vitro PrG supplementation is a potential therapy for delaying postovulatory oocyte aging.


Assuntos
Senescência Celular , Oócitos , Estresse Oxidativo , Putrescina , Animais , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Putrescina/metabolismo , Putrescina/farmacologia , Camundongos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Glucosídeos/farmacologia
2.
Appl Environ Microbiol ; 90(7): e0056924, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38916292

RESUMO

Microbial community adaptability to pH stress plays a crucial role in biofilm formation. This study aims to investigate the regulatory mechanisms of exogenous putrescine on pH stress, as well as enhance understanding and application for the technical measures and molecular mechanisms of biofilm regulation. Findings demonstrated that exogenous putrescine acted as a switch-like distributor affecting microorganism pH stress, thus promoting biofilm formation under acid conditions while inhibiting it under alkaline conditions. As pH decreases, the protonation degree of putrescine increases, making putrescine more readily adsorbed. Protonated exogenous putrescine could increase cell membrane permeability, facilitating its entry into the cell. Subsequently, putrescine consumed intracellular H+ by enhancing the glutamate-based acid resistance strategy and the γ-aminobutyric acid metabolic pathway to reduce acid stress on cells. Furthermore, putrescine stimulated ATPase expression, allowing for better utilization of energy in H+ transmembrane transport and enhancing oxidative phosphorylation activity. However, putrescine protonation was limited under alkaline conditions, and the intracellular H+ consumption further exacerbated alkali stress and inhibits cellular metabolic activity. Exogenous putrescine promoted the proportion of fungi and acidophilic bacteria under acidic stress and alkaliphilic bacteria under alkali stress while having a limited impact on fungi in alkaline biofilms. Increasing Bdellovibrio under alkali conditions with putrescine further aggravated the biofilm decomposition. This research shed light on the unclear relationship between exogenous putrescine, environmental pH, and pH stress adaptability of biofilm. By judiciously employing putrescine, biofilm formation could be controlled to meet the needs of engineering applications with different characteristics.IMPORTANCEThe objective of this study is to unravel the regulatory mechanism by which exogenous putrescine influences biofilm pH stress adaptability and understand the role of environmental pH in this intricate process. Our findings revealed that exogenous putrescine functioned as a switch-like distributor affecting the pH stress adaptability of biofilm-based activated sludge, which promoted energy utilization for growth and reproduction processes under acidic conditions while limiting biofilm development to conserve energy under alkaline conditions. This study not only clarified the previously ambiguous relationship between exogenous putrescine, environmental pH, and biofilm pH stress adaptability but also offered fresh insights into enhancing biofilm stability within extreme environments. Through the modulation of energy utilization, exerting control over biofilm growth and achieving more effective engineering goals could be possible.


Assuntos
Biofilmes , Putrescina , Esgotos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Putrescina/metabolismo , Putrescina/farmacologia , Esgotos/microbiologia , Estresse Fisiológico , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Adaptação Fisiológica
3.
Dev Med Child Neurol ; 66(4): 445-455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37469105

RESUMO

Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.


Assuntos
Putrescina , Espermidina , Humanos , Criança , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Espermidina/farmacologia , Poliaminas/metabolismo , Poliaminas/farmacologia , Espermina/metabolismo , Espermina/farmacologia , Eflornitina/farmacologia
4.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279308

RESUMO

Ammonium and polyamines are essential nitrogen metabolites in all living organisms. Crosstalk between ammonium and polyamines through their metabolic pathways has been demonstrated in plants and animals, while no research has been directed to explore this relationship in algae or to investigate the underlying molecular mechanisms. Previous research demonstrated that high concentrations of ammonium and putrescine were among the active substances in bacteria-derived algicide targeting dinoflagellates, suggesting that the biochemical inter-connection and/or interaction of these nitrogen compounds play an essential role in controlling these ecologically important algal species. In this research, putrescine, ammonium, or a combination of putrescine and ammonium was added to cultures of three dinoflagellate species to explore their effects. The results demonstrated the dose-dependent and species-specific synergistic effects of putrescine and ammonium on these species. To further explore the molecular mechanisms behind the synergistic effects, transcriptome analysis was conducted on dinoflagellate Karlodinium veneficum treated with putrescine or ammonium vs. a combination of putrescine and ammonium. The results suggested that the synergistic effects of putrescine and ammonium disrupted polyamine homeostasis and reduced ammonium tolerance, which may have contributed to the cell death of K. veneficum. There was also transcriptomic evidence of damage to chloroplasts and impaired photosynthesis of K. veneficum. This research illustrates the molecular mechanisms underlying the synergistic effects of the major nitrogen metabolites, ammonium and putrescine, in dinoflagellates and provides direction for future studies on polyamine biology in algal species.


Assuntos
Compostos de Amônio , Dinoflagellida , Animais , Putrescina/farmacologia , Putrescina/metabolismo , Dinoflagellida/metabolismo , Compostos de Amônio/farmacologia , Poliaminas/farmacologia , Poliaminas/metabolismo , Nitrogênio/farmacologia
5.
Bull Exp Biol Med ; 177(3): 307-312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39123088

RESUMO

We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.


Assuntos
Amina Oxidase (contendo Cobre) , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Ratos , Oxirredução/efeitos dos fármacos , Desaminação , Amina Oxidase (contendo Cobre)/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliamina Oxidase , Putrescina/metabolismo , Putrescina/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Sistema Livre de Células , Fígado/metabolismo , Fígado/efeitos dos fármacos , Poliaminas/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Espermidina/metabolismo , Masculino , Nitrogênio/metabolismo , Ratos Wistar
6.
Biochem Biophys Res Commun ; 684: 149127, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37871520

RESUMO

BACKGROUND: Fatty acid oxidation of cumulus-oocyte complex (COC) provides sufficient energy for oocyte maturation. But, the relationship between fatty acid oxidation and oxidative stress in aging follicles, as well as the effect of putrescine, is still unclear. METHODS: The porcine COCs were randomly divided into four groups and cultured in in vitro maturation (IVM) medium with or without 1 mmol/L putrescine, with 50 µmol/L hydrogen peroxide (H2O2) or with 50 µmol/L H2O2 plus 1 mmol/L putrescine. Oocyte maturation was assessed by the first polar body extrusion. The expressions of genes involved in fatty acid oxidation were detected, and the mitochondrial function was analyzed by themembrane potential. RESULTS: The maturation rate of oocyte was significantly lower in the H2O2 group when compared with the control group (P<0.001), and putrescine significantly increased this rate in the H2O2 plus putrescine group when compared with the H2O2 group (P<0.001). The expressions of LKB1, STRAD, ACC2, AMPKα1 and AMPKα2 mRNAs in cumulus cells (CCs) were significantly downregulated by H2O2 treatment, and partly rescued by putrescine addition (P<0.05-0.001). However, the changes of LKB1, STRAD, ACC2, AMPKα1 and AMPKα2 mRNAs in oocytes were inapparent. The mitochondrial membrane potential of CCs in the H2O2 group was significantly lower than that in the control group, while putrescine addition significantly increased the mitochondrial membrane potential (P<0.001). CONCLUSION: The decrease of oocyte maturation due to oxidative stress is related with the decreased fatty acid oxidation, and putrescine may alleviate the COCs damage via improving fatty acid oxidation.


Assuntos
Peróxido de Hidrogênio , Putrescina , Animais , Suínos , Feminino , Putrescina/farmacologia , Putrescina/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Células do Cúmulo
7.
BMC Plant Biol ; 23(1): 411, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667189

RESUMO

BACKGROUND: Cadmium (Cd) stress displays critical damage to the plant growth and health. Uptake and accumulation of Cd in plant tissues cause detrimental effects on crop productivity and ultimately impose threats to human beings. For this reason, a quite number of attempts have been made to buffer the adverse effects or to reduce the uptake of Cd. Of those strategies, the application of functionalized nanoparticles has lately attracted increasing attention. Former reports clearly noted that putrescine (Put) displayed promising effects on alleviating different stress conditions like Cd and similarly chitosan (CTS), as well as its nano form, demonstrated parallel properties in this regard besides acting as a carrier for many loads with different applications in the agriculture industry. Herein, we, for the first time, assayed the potential effects of nano-conjugate form of Put and CTS (CTS-Put NP) on grapevine (Vitis vinifera L.) cv. Sultana suffering from Cd stress. We hypothesized that their nano conjugate combination (CTS-Put NPs) could potentially enhance Put proficiency, above all at lower doses under stress conditions via CTS as a carrier for Put. In this regard, Put (50 mg L- 1), CTS (0.5%), Put 50 mg L- 1 + CTS 0.5%" and CTS-Put NPs (0.1 and 0.5%) were applied on grapevines under Cd-stress conditions (0 and 10 mg kg- 1). The interactive effects of CTS-Put NP were investigated through a series of physiological and biochemical assays. RESULTS: The findings of present study clearly revealed that CTS-Put NPs as optimal treatments alleviated adverse effects of Cd-stress condition by enhancing chlorophyll (chl) a, b, carotenoids, Fv/Fm, Y(II), proline, total phenolic compounds, anthocyanins, antioxidant enzymatic activities and decreasing Y (NO), leaf and root Cd content, EL, MDA and H2O2. CONCLUSIONS: In conclusion, CTS-Put NPs could be applied as a stress protection treatment on plants under diverse heavy metal toxicity conditions to promote plant health, potentially highlighting new avenues for sustainable crop production in the agricultural sector under the threat of climate change.


Assuntos
Quitosana , Vitis , Humanos , Cádmio/toxicidade , Antioxidantes , Quitosana/farmacologia , Putrescina/farmacologia , Antocianinas , Peróxido de Hidrogênio , Clorofila A
8.
BMC Plant Biol ; 23(1): 135, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899321

RESUMO

BACKGROUND: Cold stress is an effective factor in reducing production and injuring fruit trees. Various materials, such as salicylic acid, ascorbic acid, and putrescine, are used to alleviate the damage of abiotic stress. RESULTS: The effect of different treatments of putrescine, salicylic acid, and ascorbic acid on alleviating the damage of frost stress (- 3 °C) to grapes 'Giziluzum' was investigated. Frost stress increased the amount of H2O2, MDA, proline, and MSI. On the other hand, it decreased the concentration of chlorophyll and carotenoids in the leaves. Putrescine, salicylic acid and ascorbic acid significantly increased the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, and superoxide dismutase under frost stress. Following frost stress, the grapes treated with putrescine, salicylic acid, and ascorbic acid showed higher levels of DHA, AsA, and AsA/DHA than the untreated grapes. Our results showed that the treatment with ascorbic acid outperformed the other treatments in adjusting frost stress damages. CONCLUSION: The use of compounds, such as ascorbic ac id, salicylic acid, and putrescine, modulates the effects of frost stress, thereby increasing the antioxidant defense system of cells, reducing its damage, and stabilizing stable cell conditions, so it can be used to reduce frost damage to different grape cultivars.


Assuntos
Ácido Ascórbico , Vitis , Ácido Salicílico/farmacologia , Putrescina/farmacologia , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia
9.
Fungal Genet Biol ; 166: 103792, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996931

RESUMO

Polyamines are ubiquitous small organic cations, and their roles as regulators of several cellular processes are widely recognized. They are implicated in the key stages of the fungal life cycle. Ustilago maydis is a phytopathogenic fungus, the causal agent of common smut of maize and a model system to understand dimorphism and virulence. U. maydis grows in yeast form at pH 7 and it can develop its mycelial form in vitro at pH 3. Δodc mutants that are unable to synthesize polyamines, grow as yeast at pH 3 with a low putrescine concentration, and to complete its dimorphic transition high putrescine concentration is require. Δspd mutants require spermidine to grow and cannot form mycelium at pH 3. In this work, the increased expression of the mating genes, mfa1 and mfa2, on Δodc mutants, was related to high putrescine concentration. Global gene expression analysis comparisons of Δodc and Δspd U. maydis mutants indicated that 2,959 genes were differentially expressed in the presence of exogenous putrescine at pH 7 and 475 genes at pH 3. While, in Δspd mutant, the expression of 1,426 genes was affected by exogenous spermine concentration at pH 7 and 11 genes at pH 3. Additionally, we identified 28 transcriptional modules with correlated expression during seven tested conditions: mutant genotype, morphology (yeast, and mycelium), pH, and putrescine or spermidine concentration. Furthermore, significant differences in transcript levels were noted for genes in modules relating to pH and genotype genes involved in ribosome biogenesis, mitochondrial oxidative phosphorylation, N-glycan synthesis, and Glycosylphosphatidylinositol (GPI)-anchor. In summary, our results offer a valuable tool for the identification of potential factors involved in phenomena related to polyamines and dimorphism.


Assuntos
Poliaminas , Proteínas de Saccharomyces cerevisiae , Poliaminas/metabolismo , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Espermidina Sintase/genética , Saccharomyces cerevisiae/genética , Caracteres Sexuais , Expressão Gênica , Lipoproteínas/genética , Feromônios , Proteínas de Saccharomyces cerevisiae/genética
10.
Plant Physiol ; 188(4): 2289-2307, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34791442

RESUMO

Growth promotion induced by the endosymbiont Piriformospora indica has been observed in various plants; however, except growth phytohormones, specific functional metabolites involved in P. indica-mediated growth promotion are unknown. Here, we used a gas chromatography-mass spectrometry-based untargeted metabolite analysis to identify tomato (Solanum lycopersicum) metabolites whose levels were altered during P. indica-mediated growth promotion. Metabolomic multivariate analysis revealed several primary metabolites with altered levels, with putrescine (Put) induced most significantly in roots during the interaction. Further, our results indicated that P. indica modulates the arginine decarboxylase (ADC)-mediated Put biosynthesis pathway via induction of SlADC1 in tomato. Piriformospora indica did not promote growth in Sladc1-(virus-induced gene silencing of SlADC1) lines of tomato and showed less colonization. Furthermore, using LC-MS/MS we showed that Put promoted growth by elevation of auxin (indole-3-acetic acid) and gibberellin (GA4 and GA7) levels in tomato. In Arabidopsis (Arabidopsis thaliana) adc knockout mutants, P. indica colonization also decreased and showed no plant growth promotion, and this response was rescued upon exogenous application of Put. Put is also important for hyphal growth of P. indica, indicating that it is co-adapted by both host and microbe. Taken together, we conclude that Put is an essential metabolite and its biosynthesis in plants is crucial for P. indica-mediated plant growth promotion and fungal growth.


Assuntos
Basidiomycota , Putrescina , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Putrescina/metabolismo , Putrescina/farmacologia , Espectrometria de Massas em Tandem
11.
Appl Microbiol Biotechnol ; 107(9): 2855-2870, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947192

RESUMO

Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.


Assuntos
Poliaminas , Espermidina , Cricetinae , Animais , Poliaminas/farmacologia , Poliaminas/metabolismo , Células CHO , Cricetulus , Espermidina/metabolismo , Putrescina/farmacologia , Putrescina/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Proliferação de Células
12.
PLoS Genet ; 16(10): e1009085, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125364

RESUMO

DNA supercoiling is essential for all living cells because it controls all processes involving DNA. In bacteria, global DNA supercoiling results from the opposing activities of topoisomerase I, which relaxes DNA, and DNA gyrase, which compacts DNA. These enzymes are widely conserved, sharing >91% amino acid identity between the closely related species Escherichia coli and Salmonella enterica serovar Typhimurium. Why, then, do E. coli and Salmonella exhibit different DNA supercoiling when experiencing the same conditions? We now report that this surprising difference reflects disparate activation of their DNA gyrases by the polyamine spermidine and its precursor putrescine. In vitro, Salmonella DNA gyrase activity was sensitive to changes in putrescine concentration within the physiological range, whereas activity of the E. coli enzyme was not. In vivo, putrescine activated the Salmonella DNA gyrase and spermidine the E. coli enzyme. High extracellular Mg2+ decreased DNA supercoiling exclusively in Salmonella by reducing the putrescine concentration. Our results establish the basis for the differences in global DNA supercoiling between E. coli and Salmonella, define a signal transduction pathway regulating DNA supercoiling, and identify potential targets for antibacterial agents.


Assuntos
DNA Girase/genética , DNA Topoisomerases Tipo I/genética , DNA Super-Helicoidal/genética , Escherichia coli/genética , Salmonella typhimurium/genética , DNA Girase/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA Super-Helicoidal/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Magnésio/farmacologia , Putrescina/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/enzimologia , Espermidina/biossíntese
13.
Anim Biotechnol ; 34(8): 3887-3896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37466367

RESUMO

This study aimed to investigate the effect of putrescine supplementation to maturation medium during in vitro embryo production in cattle on maturation and embryo development/quality. Oocytes obtained from the ovaries of Holstein cattle were used in the study. Obtained cumulus-oocyte complexes were evaluated according to morphological structure, cytoplasmic features, and cumulus cell number, and only Category-I ones were used in the study. Before the in vitro maturation step, oocytes were randomly divided into two groups. In the first group (Putrescine group, n = 159), 0.5 mM putrescine was added to the maturation medium before in vitro maturation. No addition was applied to the maturation medium of the second group (Control group, n = 149). Cumulus expansion degrees of oocytes following maturation (Grade I: poor, Grade II: partial, and Grade III: complete) were determined. In addition, the meiosis of oocytes after maturation was evaluated by differential staining. Then the oocytes were left for fertilization with sperm and finally, possible zygotes were transferred to the culture medium. After determining the developmental stages and quality of the embryos after in vitro culture, only the embryos at the blastocyst stage were stained with the differential staining method to determine the cell numbers. When the cumulus expansion degrees of the groups were evaluated, the Grade III cumulus expansion rate in the putrescine group was higher than the control group (74.21% and 60.4%; respectively) and the Grade I expansion rate (11.95% and 26.17%; respectively) was found lower (p < .05). When the resumption of meiosis was evaluated according to the cumulus expansion degrees, it was determined that the rate of resumption of meiosis increased as the cumulus expansion increased. In addition, the cleavage rates of oocytes and reaching the blastocyst in the putrescine group were found to be higher than in the control group (p < .05). Moreover, inner cell mass, trophectoderm cells, and total cell counts were found to be higher in blastocysts obtained after the putrescine supplementation to the maturation medium compared to the control group (p < .05). As a result, it was determined that the putrescine supplementation to the maturation medium during in vitro embryo production in cattle increased the degree of cumulus expansion and the rate of resumption of meiosis. In addition, putrescine supplementation was thought to increase the rate of reaching the blastocyst of oocytes due to better cell development in embryos.


Assuntos
Putrescina , Sêmen , Masculino , Feminino , Bovinos , Animais , Putrescina/farmacologia , Oócitos , Desenvolvimento Embrionário , Blastocisto , Suplementos Nutricionais , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Fertilização in vitro/veterinária , Células do Cúmulo
14.
Pestic Biochem Physiol ; 195: 105581, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666606

RESUMO

Anthracnose decay caused by Colletotrichum gloeosporioides greatly shortens the shelf life and commercial quality of mango fruit. Putrescine (1,4-Diaminobutane) is involved in modulating plant defense to various environmental stresses. In this research, in vivo and in vitro tests were used to explore the antifungal activity and the underlying mechanism of putrescine against C. gloeosporioides in mango fruit after harvested. In vivo tests suggested that putrescine markedly delayed the occurrence of disease and limited the spots expansion on inoculated mango fruit. Further analysis exhibited that putrescine treatment enhanced disease resistance, along with enhanced activities of chitinase (CHI), ß-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate coenzyme A ligase (4CL), polyphenol oxidase (PPO) and the accumulation of lignin, flavonoid, phenolics, and anthocyanin in infected mango fruit. In addition, in vitro tests showed that putrescine exerted strongly antifungal activity against C. gloeosporioides. Putrescine induced the production of reactive oxygen species (ROS) and severe lipid peroxidation damage in C. gloeosporioides mycelia, resulting in the leakage of soluble protein, soluble sugar, nucleic acids, K+ and Ca2+ of C. gloeosporioides mycelia. The mycelium treated with putrescine showed severe deformity and shrinkage, and even cracking. Taken together, putrescine could effectively reduce the incidence rate and severity of anthracnose disease possibly through direct fungicidal effect and indirect induced resistance mechanism, thus showing great potential to be applied to disease control.


Assuntos
Fungicidas Industriais , Mangifera , Antifúngicos/farmacologia , Putrescina/farmacologia , Frutas , Fungicidas Industriais/farmacologia
15.
Chem Biodivers ; 20(11): e202301043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751472

RESUMO

Polyamines are small polycationic molecules containing amines that are present in almost all cells of living organisms and act in a wide range of physiological processes, growth, and development, biological and protection of cells against free radicals. This research is based on principal component analysis (PCA) and calculation of selection criteria (SC) to investigate the effect of foliar spraying of polyamine putrescine on essential oil yield, essential oil compounds, antioxidant activity, and biochemical compounds (polyphenol, flavonoid, and total phenol compounds) of Salvia officinalis. The treatments used included four levels of putrescine, Put (Control: 0, Put1: 500, Put2: 1000, and Put3: 1500 mg L-1 ) with five replications. Based on our results, four factors had eigenvalues≥1 and showed a cumulative variance percentage of 92.57 % by applying different concentrations of putrescine. According to the results of this research, putrescine had significant effects on the amount of total phenolic compounds, flavonoids, and antioxidant activity. The best attention to improving the essential oil yield of sage was 1000 mg L-1 . The crucial essential oil compounds of different Put treated sage were: cis-thujone (35.34 %), camphor (15.60 %), trans-thujone (9.90 %), 1,8-cineole (9.46 %), α-humulene (3.85 %), viridiflorol (3.62 %), camphene (3.58 %), α-pinene (3.50 %), ß-pinene (2.78 %), and limonene (1.23 %). The results showed that the amount of total phenol, the phenolic composition of catechin, and the antioxidant activity of sage plant extract increased significantly when putrescine was used at 1000 mg/liter. Results can use the current research to optimize the production management of medicinal plants and improve the quality of their products. In addition, the advantage of using putrescine is that it increases antioxidants and reduces oxidative damage, and can replace medicinal plants as suitable natural preservatives, thus improving food quality and safety.


Assuntos
Óleos Voláteis , Salvia officinalis , Óleos Voláteis/química , Antioxidantes/farmacologia , Putrescina/farmacologia , Salvia officinalis/química , Polifenóis/farmacologia , Flavonoides/farmacologia , Fenóis/farmacologia
16.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298617

RESUMO

Polyamine intake has been reported to help extend the lifespan of animals. Fermented foods contain high concentrations of polyamines, produced by fermenting bacteria. Therefore, the bacteria, isolated from fermented foods that produce large amounts of polyamines, are potentially used as a source of polyamines for humans. In this study, the strain Levilactobacillus brevis FB215, which has the ability to accumulate approximately 200 µM of putrescine in the culture supernatant, was isolated from fermented foods, specifically the Blue Stilton cheese. Furthermore, L. brevis FB215 synthesized putrescine from agmatine and ornithine, which are known polyamine precursors. When cultured in the extract of Sakekasu, a byproduct obtained during the brewing of Japanese rice wine containing high levels of both agmatine and ornithine, L. brevis FB215 grew to OD600 = 1.7 after 83 h of cultivation and accumulated high concentrations (~1 mM) of putrescine in the culture supernatant. The fermentation product also did not contain histamine or tyramine. The Sakekasu-derived ingredient fermented by the food-derived lactic acid bacteria developed in this study could contribute to increasing polyamine intake in humans.


Assuntos
Agmatina , Queijo , Levilactobacillus brevis , Humanos , Putrescina/farmacologia , Lactobacillaceae , Poliaminas/análise , Ornitina
17.
J Bacteriol ; 204(1): e0029721, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34723645

RESUMO

Pseudomonas aeruginosa, an opportunistic bacterial pathogen, can synthesize and catabolize several small cationic molecules known as polyamines. In several clades of bacteria, polyamines regulate biofilm formation, a lifestyle-switching process that confers resistance to environmental stress. The polyamine putrescine and its biosynthetic precursors, l-arginine and agmatine, promote biofilm formation in Pseudomonas spp. However, it remains unclear whether the effect is a direct effect of polyamines or occurs through a metabolic derivative. Here, we used a genetic approach to demonstrate that putrescine accumulation, either through disruption of the spermidine biosynthesis pathway or the catabolic putrescine aminotransferase pathway, promoted biofilm formation in P. aeruginosa. Consistent with this observation, exogenous putrescine robustly induced biofilm formation in P. aeruginosa that was dependent on putrescine uptake and biosynthesis pathways. Additionally, we show that l-arginine, the biosynthetic precursor of putrescine, also promoted biofilm formation but did so by a mechanism independent of putrescine or agmatine conversion. We found that both putrescine and l-arginine induced a significant increase in the intracellular level of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) (c-di-GMP), a bacterial second messenger widely found in Proteobacteria that upregulates biofilm formation. Collectively these data show that putrescine and its metabolic precursor, arginine, promote biofilm and c-di-GMP synthesis in P. aeruginosa. IMPORTANCE Biofilm formation allows bacteria to physically attach to a surface, confer tolerance to antimicrobial agents, and promote resistance to host immune responses. As a result, the regulation of biofilm formation is often crucial for bacterial pathogens to establish chronic infections. A primary mechanism of biofilm promotion in bacteria is the molecule c-di-GMP, which promotes biofilm formation. The level of c-di-GMP is tightly regulated by bacterial enzymes. In this study, we found that putrescine, a small molecule ubiquitously found in eukaryotic cells, robustly enhances P. aeruginosa biofilm and c-di-GMP. We propose that P. aeruginosa may sense putrescine as a host-associated signal that triggers a lifestyle switch that favors chronic infection.


Assuntos
Arginina/farmacologia , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Putrescina/farmacologia , GMP Cíclico/biossíntese , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Regulação para Cima
18.
Biol Reprod ; 106(4): 792-801, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34935905

RESUMO

In all mammalian species examined thus far, the ovaries produce a burst of ornithine decarboxylase (ODC) and putrescine during ovulation or after application of human chorionic gonadotropin (hCG). Aged mice have significantly reduced levels of this periovulatory ODC and putrescine rise. Putrescine supplementation, in vitro during oocyte maturation or in mouse drinking water during the periovulatory period, reduces egg aneuploidies and embryo resorption, improving fertility of aged mice. These studies suggest that periovulatory putrescine supplementation may be a simple and effective therapy for reproductive aging for women. However, putrescine supplementation is expected to increase widespread tissue putrescine levels, raising concerns of nonspecific and unwanted side effects. Given that ODC is highly expressed in the ovaries during ovulation but otherwise exhibits low activity in most tissues, we hypothesized that periovulatory supplementation of L-ornithine, the substrate of ODC, might be suitable for delivering putrescine specifically to the ovaries. In this study, we have demonstrated that systemic application of L-ornithine via oral gavage or subcutaneous injection increased ovarian putrescine levels; the increase was restricted to animals that had been injected with hCG. Furthermore, L-ornithine specifically increased ovarian putrescine levels without affecting putrescine levels in any other tissues. However, our attempts to improve fertility of aged mice through L-ornithine supplementation in mouse drinking water produced either no effects (1% L-ornithine) or negative impact on fertility (4% ornithine). Our results suggest that it might not be feasible to achieve fertility-enhancing ovarian putrescine levels via L-ornithine supplementation in drinking water without encountering undesired consequences of high dose of exogenous L-ornithine.


Assuntos
Suplementos Nutricionais , Ornitina , Putrescina , Animais , Gonadotropina Coriônica/farmacologia , Água Potável , Feminino , Humanos , Camundongos , Ornitina/farmacologia , Ornitina Descarboxilase/farmacologia , Ovário , Ovulação , Putrescina/farmacologia
19.
Amino Acids ; 54(1): 71-84, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825975

RESUMO

Autocrine growth hormone (GH) expression triggers cell proliferation, invasion-metastasis in vitro and in vivo models, but GH gene mutations inhibit postnatal growth. Natural polyamines (PA); putrescine, spermidine, spermine trigger cell growth and differentiation. The importance of miR27a has shown to exert a suppressive effect on ornithine decarboxylase (ODC) expression in dwarf mice models. We aimed to modulate the role of A13S, F166Δ, T24 GH gene mutations' impact on PA metabolism and epithelial-mesencyhmal transition (EMT) pathway through miR27a. Biologically active GH signaling triggered cell viability, growth, and colony formation, but T24A alteration significantly decreases aggressive profiles due to inactive GH signaling through a decline in STAT5 activity and expressions of STAT5, c-myc and ODC. Although statistically significant increase in intracellular PA levels in wt GH signaling HEK293 cells compared to HEK293 cells with a lack of GH signaling, a sharp decline in PA levels measured in each mutant GH expressing HEK293 cells. When we inhibited miR27a, proliferation and colony formation accelerated through a significant increase in putrescine levels and upregulation of ODC, STAT5 expression. In contrast, a substantial decline in GH-mediated colony enlargement observed via ODC, STAT5 downregulation, and PA depletion in both wt and mutant GH expressing HEK293 cell lines by miR27a mimic transfection. In conclusion, T24A mutant GH expression declines the GH signaling through STAT5 activity, and mutant GH signaling decreased cell proliferation, division, and colony formation via EMT inhibition. The autocrine GH-mediated proliferative profiles were under the control of miR27a that depletes intracellular putrescine levels via targeting ODC.


Assuntos
Ornitina Descarboxilase , Fator de Transcrição STAT5 , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Células HEK293 , Humanos , Camundongos , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase , Putrescina/metabolismo , Putrescina/farmacologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Espermidina/metabolismo
20.
Mol Biol Rep ; 49(1): 31-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773551

RESUMO

BACKGROUND: Catharanthus roseus (L.) G. Donis a medicinal plant species belonging to the Apocynaceae family, which produces vinblastine and vincristine along with 100 other monoterpenoid indole alkaloids. The process of biosynthesis of C. roseus alkaloids is complex, in which many genes, enzymes, and regulators are involved. Induced mutations may be considered as a potential source for producing a higher amount of vinblastine and vincristine in this plant species. Therefore, the objective of the present study was to examine the effects of different treatments utilized on the induced genetic changes in C. roseus plants and enzyme activities. METHODS AND RESULTS: Spermine, jasmonic acid, methyjasmonate, putrescine, and cold plasma treatments were used for seed treatments. Different molecular markers, namely inter simple sequence repeat, inter retrotransposon amplified polymorphism, and retrotransposon microsatellite amplified polymorphism were employed to reveal the induced genetic changes. Antioxidant enzyme activities were also studied. The treated plants showed genetic variability and a significant increase in antioxidant enzyme activity compared to the control plants. The putrescine treatment resulted in the highest level of activity in superoxidase. A significant positive correlation occurred between the molecular markers data and antioxidant enzyme activities in treated plants. CONCLUSION: Our data revealed that the different phytohormones and cold plasma treatments could induce both genetic and chemical content changes in C. roseus plants.


Assuntos
Catharanthus/crescimento & desenvolvimento , Repetições de Microssatélites , Reguladores de Crescimento de Plantas/farmacologia , Gases em Plasma/farmacologia , Retroelementos , Acetatos/farmacologia , Catharanthus/efeitos dos fármacos , Catharanthus/genética , Catharanthus/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Putrescina/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espermina/farmacologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA