Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422159

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(52): e2312110120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109539

RESUMO

Natural products that possess antibiotic and antitumor qualities are often suspected of working through oxidative mechanisms. In this study, two quinone-based small molecules were compared. Menadione, a classic redox-cycling compound, was confirmed to generate high levels of reactive oxygen species inside Escherichia coli. It inactivated iron-cofactored enzymes and blocked growth. However, despite the substantial levels of oxidants that it produced, it was unable to generate significant DNA damage and was not lethal. Streptonigrin, in contrast, was poorer at redox cycling and did not inactivate enzymes or block growth; however, even in low doses, it damaged DNA and killed cells. Its activity required iron and oxygen, and in vitro experiments indicated that its quinone moiety transferred electrons through the adjacent iron atom to oxygen. Additionally, in vitro experiments revealed that streptonigrin was able to damage DNA without inhibition by catalase, indicating that hydrogen peroxide was not involved. We infer that streptonigrin can reduce bound oxygen directly to a ferryl species, which then oxidizes the adjacent DNA, without release of superoxide or hydrogen peroxide intermediates. This scheme allows streptonigrin to kill a bacterial cell without interference by scavenging enzymes. Moreover, its minimal redox-cycling behavior avoids alerting either the OxyR or the SoxRS systems, which otherwise would block killing. This example highlights qualities that may be important in the design of oxidative drugs. These results also cast doubt on proposals that bacteria can be killed by stressors that merely stimulate intracellular O2- and H2O2 formation.


Assuntos
Peróxido de Hidrogênio , Oxidantes , Oxidantes/farmacologia , Oxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Estreptonigrina/metabolismo , Estresse Oxidativo , Escherichia coli/genética , Oxigênio/metabolismo , Ferro/metabolismo , DNA/metabolismo , Quinonas/metabolismo
3.
J Biol Chem ; 300(5): 107149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479599

RESUMO

Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.


Assuntos
Sulfetos , Tiossulfato Sulfurtransferase , Humanos , Compostos Bicíclicos com Pontes , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Quinona Redutases/metabolismo , Quinona Redutases/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfato Sulfurtransferase/química , Quinonas/química , Quinonas/metabolismo , Especificidade por Substrato
4.
Drug Metab Dispos ; 52(3): 188-197, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123940

RESUMO

Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 µM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.


Assuntos
Neoplasias da Mama , Citocromo P-450 CYP1A2 , Furanos , Fenantrenos , Quinonas , Humanos , Feminino , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Cinética , Citocromo P-450 CYP1B1/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo
5.
J Biol Inorg Chem ; 29(4): 455-475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38780762

RESUMO

Ferritins are multimeric nanocage proteins that sequester/concentrate excess of free iron and catalytically synthesize a hydrated ferric oxyhydroxide bio-mineral. Besides functioning as the primary intracellular iron storehouses, these supramolecular assemblies also oversee the controlled release of iron to meet physiologic demands. By virtue of the reducing nature of the cytosol, reductive dissolution of ferritin-iron bio-mineral by physiologic reducing agents might be a probable pathway operating in vivo. Herein, to explore this reductive iron-release pathway, a series of quinone analogs differing in size, position/nature of substituents and redox potentials were employed to relay electrons from physiologic reducing agent, NADH, to the ferritin core. Quinones are well known natural electron/proton mediators capable of facilitating both 1/2 electron transfer processes and have been implicated in iron/nutrient acquisition in plants and energy transduction. Our findings on the structure-reactivity of quinone mediators highlight that iron release from ferritin is dictated by electron-relay capability (dependent on E1/2 values) of quinones, their molecular structure (i.e., the presence of iron-chelation sites and the propensity for H-bonding) and the type/amount of reactive oxygen species (ROS) they generate in situ. Juglone/Plumbagin released maximum iron due to their intermediate E1/2 values, presence of iron chelation sites, the ability to inhibit in situ generation of H2O2 and form intramolecular H-bonding (possibly promotes semiquinone formation). This study may strengthen our understanding of the ferritin-iron-release process and their significance in bioenergetics/O2-based cellular metabolism/toxicity while providing insights on microbial/plant iron acquisition and the dynamic host-pathogen interactions.


Assuntos
Ferritinas , Ferro , NAD , Oxirredução , Quinonas , Espécies Reativas de Oxigênio , Ferritinas/química , Ferritinas/metabolismo , Ferro/metabolismo , Ferro/química , NAD/metabolismo , NAD/química , Oxigênio/metabolismo , Oxigênio/química , Quinonas/química , Quinonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mycobacterium
6.
Chemistry ; 30(33): e202400082, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38628039

RESUMO

Fagopyrins are phenantroperylenequinones present in the flowers of Fagopyrum esculentum (buckwheat) endowed with photodynamic activity. It has been reported that fagopyrin extracts actually contain a complex mixture of closely related compounds, differing only on the nature of the perylenequinone substituents. We report our systematic and detailed study on the chemical composition of fagopyrin extracts by a combination of preparative and analytical techniques. The combined use of 1H-NMR and CD spectroscopy was found to be particularly suited to fully characterize all stereochemical aspects of the extracted fagopyrins. For the first time nine isomers have been structurally characterized and their stereochemistry fully elucidated. The presence of two different heterocyclic ring substituents, two stereogenic centers and the inherent axial chirality of the aromatic system provides a complex stereochemical relationships among isomers, thus giving account of the high level of molecular multiplicity found in the extract.


Assuntos
Dicroísmo Circular , Fagopyrum , Flores , Fagopyrum/química , Flores/química , Estereoisomerismo , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química , Quinonas
7.
Artigo em Inglês | MEDLINE | ID: mdl-39073408

RESUMO

Two Gram-stain-negative, aerobic, rod-shaped, non-endospore-forming and motile bacterial strains, designated IT1137T and S025T, were isolated from an intertidal sediment sample collected from the Fildes Peninsula (King George Island, Maritime Antarctica) and a soil sample under red snow in the Ny-Ålesund region (Svalbard, High Arctic), respectively. The 16S rRNA gene sequence similarity values grouped them in the genus Pseudomonas. The two strains were characterized phenotypically using API 20E, API 20NE, API ZYM and Biolog GENIII tests and chemotaxonomically by their fatty acid contents, polar lipids and respiratory quinones. Multilocus sequence analysis (concatenated 16S rRNA, gyrB, rpoB and rpoD sequences), together with genome comparisons by average nucleotide identity and digital DNA-DNA hybridization, were performed. The results showed that the similarity values of the two isolates with the type strains of related Pseudomonas species were below the recognized thresholds for species definition. Based on polyphasic taxonomy analysis, it can be concluded that strains IT1137T and S025T represent two novel species of the genus Pseudomonas, for which the names Pseudomonas paeninsulae sp. nov. (type strain IT1137T=PMCC 100533T=CCTCC AB 2023226T=JCM 36637T) and Pseudomonas svalbardensis sp. nov. (type strain S025T=PMCC 200367T= CCTCC AB 2023225T=JCM 36638T) are proposed.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , Pseudomonas , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , Pseudomonas/genética , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Sedimentos Geológicos/microbiologia , DNA Bacteriano/genética , Regiões Árticas , Regiões Antárticas , Ácidos Graxos/análise , Svalbard , Composição de Bases , Quinonas/análise
8.
Org Biomol Chem ; 22(5): 1038-1046, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197499

RESUMO

This paper describes a simple and practical protocol for the direct synthesis of acyclic and cyclic quinone derivatives via an acid-promoted nickel(II)-catalyzed inner rim C-H oxidation of cyclotriveratrylene (CTV) and its analogues. The cyclic quinone derivatives resulted from trimethoxy-cyclotriveratrylene (TCTV) through C-C bond formation via intramolecular ipso substitution followed by subsequent anionic rearrangement containing stereo-vicinal quaternary centers. The DFT calculations strongly support the experimental findings and reveal the role of Brønsted acids in the C-H bond activation of CTV. All the newly synthesized compounds were screened for their in vitro anti-cancer activity using colorimetric SRB assay analysis. Among them, compounds 3a, 3d, 3h, 4a, 4b, 4c and 4e exhibited moderate anticancer activity against A549, HCT-116, PC-3, MDA-MB-231, HEK-293 and SW620 human cancer cell lines.


Assuntos
Antineoplásicos , Compostos Policíclicos , Humanos , Quinonas/farmacologia , Células HEK293 , Antineoplásicos/química , Catálise
9.
Environ Sci Technol ; 58(13): 5921-5931, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512777

RESUMO

Identifying transformed emerging contaminants in complex environmental compartments is a challenging but meaningful task. Substituted para-phenylenediamine quinones (PPD-quinones) are emerging contaminants originating from rubber antioxidants and have been proven to be toxic to the aquatic species, especially salmonids. The emergence of multiple PPD-quinones in various environmental matrices and evidence of their specific hazards underscore the need to understand their environmental occurrences. Here, we introduce a fragmentation pattern-based nontargeted screening strategy combining full MS/All ion fragmentation/neutral loss-ddMS2 scans to identify potential unknown PPD-quinones in different environmental matrices. Using diagnostic fragments of m/z 170.0600, 139.0502, and characteristic neutral losses of 199.0633, 138.0429 Da, six known and three novel PPD-quinones were recognized in air particulates, surface soil, and tire tissue. Their specific structures were confirmed, and their environmental concentration and composition profiles were clarified with self-synthesized standards. N-(1-methylheptyl)-N'-phenyl-1,4-benzenediamine quinone (8PPD-Q) and N,N'-di(1,3-dimethylbutyl)-p-phenylenediamine quinone (66PD-Q) were identified and quantified for the first time, with their median concentrations found to be 0.02-0.21 µg·g-1 in tire tissue, 0.40-2.76 pg·m-3 in air particles, and 0.23-1.02 ng·g-1 in surface soil. This work provides new evidence for the presence of unknown PPD-quinones in the environment, showcasing a potential strategy for screening emerging transformed contaminants in the environment.


Assuntos
Fenilenodiaminas , Quinonas , Fenilenodiaminas/química , Benzoquinonas , Solo
10.
Bioorg Chem ; 143: 107021, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104499

RESUMO

The diagnosis and treatment of breast cancer is of immense importance in improving patient outcomes. The biological marker NAD(P)H:quinone oxidoreductase 1 was utilized to design BrCyS-Q, a near-infrared activatable photosensitizer for breast cancer. BrCyS-Q was successfully employed to diagnose breast cancer cells using fluorescence and photodynamic inhibition. The findings of this research may offer novel insights for the diagnosis and treatment of clinical breast cancer via photodynamic therapy.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Humanos , Feminino , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Quinonas , Fluorescência
11.
Environ Res ; 247: 118201, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220074

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.


Assuntos
Benzoquinonas , Exposição Ambiental , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Índice de Massa Corporal , Poeira , Quinonas , Diarreia/induzido quimicamente , Diarreia/epidemiologia
12.
Appl Microbiol Biotechnol ; 108(1): 317, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700737

RESUMO

Perylenequinones (PQs) are natural photosensitizing compounds used as photodynamic therapy, and heat stress (HS) is the main limiting factor of mycelial growth and secondary metabolism of fungi. This study aimed to unravel the impact of HS-induced Ca2+ and the calcium signaling pathway on PQ biosynthesis of Shiraia sp. Slf14(w). Meanwhile, the intricate interplay between HS-induced NO and Ca2+ and the calcium signaling pathway was investigated. The outcomes disclosed that Ca2+ and the calcium signaling pathway activated by HS could effectively enhance the production of PQs in Shiraia sp. Slf14(w). Further investigations elucidated the specific mechanism through which NO signaling molecules induced by HS act upon the Ca2+/CaM (calmodulin) signaling pathway, thus propelling PQ biosynthesis in Shiraia sp. Slf14(w). This was substantiated by decoding the downstream positioning of the CaM/CaN (calcineurin) pathway in relation to NO through comprehensive analyses encompassing transcript levels, enzyme assays, and the introduction of chemical agents. Concurrently, the engagement of Ca2+ and the calcium signaling pathway in heat shock signaling was also evidenced. The implications of our study underscore the pivotal role of HS-induced Ca2+ and the calcium signaling pathway, which not only participate in heat shock signal transduction but also play an instrumental role in promoting PQ biosynthesis. Consequently, our study not only enriches our comprehension of the mechanisms driving HS signaling transduction in fungi but also offers novel insights into the PQ synthesis paradigm within Shiraia sp. Slf14(w). KEY POINTS: • The calcium signaling pathway was proposed to participate in PQ biosynthesis under HS. • HS-induced NO was revealed to act upon the calcium signaling pathway for the first time.


Assuntos
Ascomicetos , Sinalização do Cálcio , Perileno , Perileno/análogos & derivados , Quinonas , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Quinonas/metabolismo , Perileno/metabolismo , Óxido Nítrico/metabolismo , Resposta ao Choque Térmico , Cálcio/metabolismo , Temperatura Alta
13.
Antonie Van Leeuwenhoek ; 117(1): 97, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980429

RESUMO

A Gram-staining-negative, facultative aerobic, motile strain, designated strain ZSDE20T, was isolated from the surface seawater of Qingdao offshore. Phylogenetic analysis of the 16S rRNA gene of strain ZSDE20T, affiliated it to the genus Photobacterium. It was closely related to Photobacterium lutimaris DF-42 T (98.92% 16S rRNA gene sequence similarity). Growth occurred at 4-28ºC (optimum 28ºC), pH 1.0-7.0 (optimum 7.0) and in the presence of 1-7% (w/v) NaCl (optimum 3%). The dominant fatty acids were summed feature 3 (C16:1 ω7c or/and C16:1 ω6c, 34.23%), summed feature 8 (C18:1 ω7c and C18:1 ω6c, 10.36%) and C16:0 (20.05%). The polar lipids of strain ZSDE20T comprised phosphatidylethanolamine, phosphatidylcholine, lyso-phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol dimannoside, phosphatidylinositol mannosides and two unknown lipids. The major respiratory quinone was ubiquinone-8 (Q-8). The DNA G + C content of strain ZSDE20T was 45.6 mol%. Average nucleotide identity (ANI) values between ZSDE20T and its reference species were lower than the threshold for species delineation (95-96%); in silico DNA-DNA hybridization further showed that strain ZSDE20T had less than 70% similarity to its relatives. Based on the polyphasic evidences, strain ZSDE20T is proposed as representing a novel species of the genus Photobacterium, for which the name Photobacterium pectinilyticum sp. nov. is proposed. The type strain is ZSDE20T (= MCCC 1K06283T = KCTC 82885 T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Photobacterium , Filogenia , RNA Ribossômico 16S , Água do Mar , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Photobacterium/genética , Photobacterium/classificação , Photobacterium/isolamento & purificação , Photobacterium/metabolismo , Photobacterium/fisiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/química , China , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Quinonas/análise , Fosfolipídeos/análise
14.
Curr Microbiol ; 81(8): 226, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879829

RESUMO

A bacterium, designated strain T21T, that is non-motile, rod-shaped, and formed pale white colonies, was isolated from the sludge of a wastewater treatment plant's secondary sedimentation tank in China. Strain T21T could grow at 20-40 °C (optimum growth at 30 °C), pH 3.0-10.0 (optimum growth at pH 5.0) and in the presence of 0-8.0% (w/v) NaCl (optimum growth at 2.0%). Based on phylogenetic analysis of 16S rRNA gene sequences and genome sequences, the isolate belongs to the genus Tessaracoccus in the phylum Actinomycetota. It exhibited a close relationship with Tessaracoccus palaemonis J1M15T, Tessaracoccus defluvii LNB-140T, Tessaracoccus flavescens SST-39T, and Tessaracoccus coleopterorum HDW20T. The 16S rRNA gene sequence similarities are 99.8%, 97.9%, 97.9%, and 97.8%, respectively. The major cellular fatty acids were anteiso-C15:0 and C16:0. The main respiratory quinone was MK-9(H4). The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, glycolipid, and phospholipid. Genome annotation of strain T21T predicted the presence of 2829 genes, of which 2754 are coding proteins and 59 are RNA genes. The genomic DNA G+C content was 69.2%. Based on the results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, we propose the name Tessaracoccus lacteus sp. nov. for this novel species within the genus Tessaracoccus. The type strain is T21T (=CCTCC AB 2023031T = KCTC 49936T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Esgotos , Águas Residuárias , RNA Ribossômico 16S/genética , Esgotos/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/análise , Águas Residuárias/microbiologia , China , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Análise de Sequência de DNA , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Quinonas/análise
15.
Curr Microbiol ; 81(10): 310, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152363

RESUMO

A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped, designated strain CAU 1642 T, was isolated from a Salicornia herbacea collected from a tidal flat in the Yellow Sea. Strain CAU 1642 T grew optimally at pH 8.0 and 30 °C. The highest 16S rRNA gene sequence similarity was 97.25%, with Pseudomarinomonas arenosa CAU 1598 T, and phylogenetic analysis indicated that strain CAU 1642 T belongs to the genus Pseudomarinomonas. The major cellular fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0). Ubiquinone-8 was the major respiratory quinone. The draft genome of strain CAU 1642 T was 4.5 Mb, with 68.7 mol% of G + C content. The phylogenetic, phenotypic, and chemotaxonomic analysis data reveal strain CAU 1642 T to be of a novel genus in the family Lysobacteraceae, with the proposed name Pseudomarinomonas salicorniae sp. nov. with type strain CAU 1642 T (= KCTC 92084 T = MCCC 1K07085T).


Assuntos
Composição de Bases , Chenopodiaceae , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Chenopodiaceae/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Ácidos Graxos/química , DNA Bacteriano/genética , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Quinonas/análise , Ubiquinona/química , Ubiquinona/análogos & derivados , Genoma Bacteriano
16.
Parasitol Res ; 123(2): 121, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308145

RESUMO

Chemical defences against parasites and pathogens can be seen in a wide range of animal taxa, including insect pests such as the red flour beetle Tribolium castaneum. Antimicrobial quinone-based secretions can be used by these beetles to defend against various parasites, particularly the fungal entomopathogen Beauveria bassiana. While quinone secretions can inhibit B. bassiana growth, it is unknown how long they remain effective or how individual secretion compounds contribute to growth inhibition. Here, we tested each individual component of the quinone secretions (methyl-1,4-benzoquinone, ethyl-1,4-benzoquinone, and 1-pentadecene), as well as two mixed solutions that represent the composition range found in natural T. castaneum secretions, after aging for 0, 24, or 72 h. The two quinone compounds equally contributed to B. bassiana inhibition, but their efficacy was significantly reduced after 24 h, with no growth inhibition after 72 h. This indicates that quinones protect insects against B. bassiana for only a limited time, perhaps requiring constant secretion into the environment to effectively defend against this fungal threat. Future investigations may consider the extent to which quinone secretions are effective against other parasites, as well as how their ability to cause parasite damage changes with compound age.


Assuntos
Beauveria , Besouros , Animais , Beauveria/fisiologia , Benzoquinonas/farmacologia , Quinonas/farmacologia
17.
Biopharm Drug Dispos ; 45(1): 30-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236698

RESUMO

SCO-267 is a potent G-protein-coupled receptor 40 agonist that is undergoing clinical development for the treatment of type 2 diabetes mellitus. The current work was undertaken to investigate the bioactivation potential of SCO-267 in vitro and in vivo. Three SCO-267-derived glutathione (GSH) conjugates (M1-M3) were found both in rat and human liver microsomal incubations supplemented with GSH and nicotinamide adenine dinucleotide phosphate. Two GSH conjugates (M1-M2) together with two N-acetyl-cysteine conjugates (M4-M5) were detected in the bile of rats receiving SCO-267 at 10 mg/kg. The identified conjugates suggested the generation of quinone-imine and ortho-quinone intermediates. CYP3A4 was demonstrated to primarily catalyze the bioactivation of SCO-267. In addition, SCO-267 concentration-, time-, and NADPH-dependently inactivated CYP3A in human liver microsomes using testosterone as a probe substrate, along with KI and kinact values of 4.91 µM and 0.036 min-1 , respectively. Ketoconazole (a competitive inhibitor of CYP3A) displayed no significant protective effect on SCO-267-induced CYP3A inactivation. However, inclusion of GSH showed significant protection. These findings revealed that SCO-267 undergoes a facile CYP3A4-catalyzed bioactivation with the generation of quinone-imine and ortho-quinone intermediates, which were assumed to be involved in SCO-267 induced CYP3A inactivation. These findings provide further insight into the bioactivation pathways involved in the generation of reactive, potentially toxic metabolites of SCO-267. Further studies are needed to evaluate the influence of SCO-267 metabolism on the safety of this drug in vivo.


Assuntos
Benzoquinonas , Citocromo P-450 CYP3A , Diabetes Mellitus Tipo 2 , Piperidinas , Piridinas , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Ativação Metabólica , Diabetes Mellitus Tipo 2/metabolismo , Quinonas/metabolismo , Iminas/metabolismo , Microssomos Hepáticos/metabolismo , Glutationa/metabolismo
18.
Chem Pharm Bull (Tokyo) ; 72(3): 266-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432908

RESUMO

In this study, an electrochemical analysis, coupled with the concept of back neutralization titration and the voltammetric determination of surplus acid, is proposed for determining the total alkalinity of water samples. When linear sweep voltammetry of 3,5-di-tert-butyl-1,2-benzoquinone (DBBQ) with H2SO4 in a water and ethanol (44 : 56, v/v) mixture was carried out using a bare glassy carbon working electrode, a cathodic prepeak of DBBQ caused by H2SO4 was observed on the voltammogram at a more positive potential than when compared with the original cathodic peak of DBBQ. When similar voltammetry was carried out in the presence of Na2CO3 and H2SO4, the cathodic prepeak height of DBBQ was decreased with an increase in the Na2CO3 concentration. The decrease of the cathodic prepeak height of DBBQ was found to be linearly related to the Na2CO3 concentration ranging from 0.025 to 2.5 mM (r2 = 0.998). The total equivalent concentrations of inorganic bases in samples of mineral water and tap water were determined, and then the results were converted to the total alkalinities of the water samples (mg/L CaCO3). The total alkalinities of the water samples determined by the present electrochemical analysis were essentially the same compared with those by the neutralization titration method. From these results, we were able to demonstrate that the present electrochemical analysis with accuracy and precision could be applied to determine the total alkalinity, which is one of the indicators to examine water quality. The present electrochemical analysis would contribute to achieving the sustainable development goals (SDGs) of #6 and #14.


Assuntos
Benzoquinonas , Carbono , Quinonas , Água , Eletrodos , Etanol , Quinonas/química , Água/análise , Água/química
19.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644164

RESUMO

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Assuntos
Doença de Chagas , Quinonas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Animais , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinonas/química , Quinonas/farmacologia , Testes de Sensibilidade Parasitária , Estrutura Molecular , Luz , Modelos Animais de Doenças , Relação Estrutura-Atividade
20.
Chem Biodivers ; 21(7): e202301771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38628065

RESUMO

The crude acetone extract of a marine Micromonospora sp. strain associated with Eudistoma vannnamei was fractioned with hexane and ethyl acetate. The crude extract and both soluble fractions were assayed against several bacteria strains. The new polycyclic quinones 12-hydroxy-9-propyltetracene-6,1-dione (1), 5,12-dihydroxy-4-methoxy-9-propyltetracene-5,12-dione (2), and 4,6-dihydroxy-3-methoxycarbonyl- methyl-6a-(oxobutyl)-5,12-anthraquinone (3), along with the known 4,6-dihydroxy-3-methoxycarbonyl-methyl-6a-(oxo-3-methyl-butyl)-5,12-anthraquinone (4) and 4,6-dihydroxy-3-methoxycarbonyl-methyl-6a-(oxopentyl)-5,12-anthraquinone (5) were isolated from the hexane-soluble fraction, while from the active ethyl acetate fraction were isolated the known 4,6,11-trihydroxy-9-propyltetracene-5,12-dione (6), 4-methoxy-9-propyltetracene-6,11-dione (7), 7,8,9,10-tetrahydro-9-hydroxy-4-methoxy-9-propyltetracene-6,11-dione (8), and 10ß-carbomethoxy-7,8,9,10-tetrahydro-4,6,7α,9α,11-pentahydroxy-9-propyltetracene-5,12-dione (9). The structures of the new compounds were established by interpretation of HRMS and NMR techniques. A study of molecular docking was performed with the compounds from the active ethyl acetate fraction to correlate tentatively with the antimicrobial activity. Molecular docking, RMSD, RMSF, and MM-GBSA evaluations were performed to investigate the inhibitory activity of 6-8 against the protein PDB-codex 1MWT, being considered a promising target for studying drug development responsible for inhibiting replication of Staphylococcus aureus. Penicillin G was used as the standard inhibitory. Anthracyclinones 6-8 were the best hydrolase inhibitor with affinity energy -8.1 to -7.9 kcal/mol compared to penicillin G, which presented -6.9 kcal/mol. Both 8 and 7 present potent inhibitory effects against hydrolase through molecular dynamics simulation and exhibit favorable drug-like properties, promising new hydrolase blockers to fight bacterial infections from Staphylococcus aureus.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Micromonospora , Simulação de Acoplamento Molecular , Quinonas , Micromonospora/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Quinonas/química , Quinonas/farmacologia , Quinonas/isolamento & purificação , Estrutura Molecular , Compostos Policíclicos/farmacologia , Compostos Policíclicos/química , Compostos Policíclicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA