RESUMO
Proliferative gastrointestinal (GI) tissue is radiation-sensitive, and heavy-ion space radiation with its high-linear energy transfer (high-LET) and higher damaging potential than low-LET γ-rays is predicted to compromise astronauts' GI function. However, much uncertainty remains in our understanding of how heavy ions affect coordinated epithelial cell migration and extrusion, which are essential for GI homeostasis. Here we show using mouse small intestine as a model and BrdU pulse labeling that cell migration along the crypt-villus axis is persistently decreased after a low dose of heavy-ion 56Fe radiation relative to control and γ-rays. Wnt/ß-catenin and its downstream EphrinB/EphB signaling are key to intestinal epithelial cell (IEC) proliferation and positioning during migration, and both are up-regulated after 56Fe radiation. Conversely, factors involved in cell polarity and adhesion and cell-extracellular matrix interactions were persistently down-regulated after 56Fe irradiation-potentially altering cytoskeletal remodeling and cell extrusion. 56Fe radiation triggered a time-dependent increase in γH2AX foci and senescent cells but without a noticeable increase in apoptosis. Some senescent cells acquired the senescence-associated secretory phenotype, and this was accompanied by increased IEC proliferation, implying a role for progrowth inflammatory factors. Collectively, this study demonstrates a unique phenomenon of heavy-ion radiation-induced persistently delayed IEC migration involving chronic sublethal genotoxic and oncogenic stress-induced altered cytoskeletal dynamics, which were seen even a year later. When considered along with changes in barrier function and nutrient absorption factors as well as increased intestinal tumorigenesis, our in vivo data raise a serious concern for long-duration deep-space manned missions.
Assuntos
Movimento Celular/efeitos da radiação , Senescência Celular/efeitos da radiação , Células Epiteliais/efeitos da radiação , Raios gama/efeitos adversos , Intestinos/patologia , Estresse Fisiológico/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Animais , Intestinos/efeitos da radiação , Radioisótopos de Ferro/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos da radiaçãoRESUMO
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aß) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aß and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Assuntos
Doença de Alzheimer , Comportamento Animal/efeitos da radiação , Raios gama , Genótipo , Radioisótopos de Ferro , Presenilina-1 , Caracteres Sexuais , Memória Espacial/efeitos da radiação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Fatores de TempoRESUMO
Patients with hereditary hemochromatosis and non-transfusion-dependent hereditary anemia develop predominantly liver iron-overload. We present a unique method allowing quantification of liver iron retention in humans during first-pass of 59Fe-labeled iron through the portal system, using standard ferrokinetic techniques measuring red cell iron uptake after oral and intravenous 59Fe administration. We present data from patients with iron deficiency (ID; N = 47), hereditary hemochromatosis (HH; N = 121) and non-transfusion-dependent hereditary anemia (HA; N = 40). Mean mucosal iron uptake and mucosal iron transfer (±SD) were elevated in patients with HH (59 ± 18%, 80 ± 15% respectively), HA (65 ± 17%, 74 ± 18%) and ID (84 ± 14%, 94 ± 6%) compared to healthy controls (43 ± 19%, 64 ± 18%) (p < 0.05) resulting in increased iron retention after 14 days compared to healthy controls in all groups (p < 0.01). The fraction of retained iron utilized for red cell production was 0.37 ± 0.17 in untreated HA, 0.55 ± 0.20 in untreated HH and 0.99 ± 0.22 in ID (p < 0.01). Interestingly, compared to red blood cell iron utilization after oral iron administration, red blood cell iron utilization was higher after injection of transferrin-bound iron in HA and HH. Liver iron retention was considerably higher in HH and HA compared to ID. We hypothesize that albumin serves as a scavenger of absorbed Fe(II) for delivering albumin-bound Fe(III) to hepatocytes.
Assuntos
Anemia Hemolítica Congênita/tratamento farmacológico , Anemia Ferropriva/tratamento farmacológico , Hemocromatose/tratamento farmacológico , Radioisótopos de Ferro/administração & dosagem , Fígado/química , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Idoso , Anemia Hemolítica Congênita/metabolismo , Anemia Ferropriva/metabolismo , Estudos de Casos e Controles , Feminino , Hemocromatose/metabolismo , Humanos , Radioisótopos de Ferro/farmacocinética , Masculino , Pessoa de Meia-Idade , Albumina Sérica Humana/metabolismo , Transferrina/metabolismo , Adulto JovemRESUMO
Viperin (RSAD2) is an interferon-stimulated antiviral protein that belongs to the radical S-adenosylmethionine (SAM) enzyme family. Viperin's iron-sulfur (Fe/S) cluster is critical for its antiviral activity against many different viruses. CIA1 (CIAO1), an essential component of the cytosolic iron-sulfur protein assembly (CIA) machinery, is crucial for Fe/S cluster insertion into viperin and hence for viperin's antiviral activity. In the CIA pathway, CIA1 cooperates with CIA2A, CIA2B, and MMS19 targeting factors to form various complexes that mediate the dedicated maturation of specific Fe/S recipient proteins. To date, however, the mechanisms of how viperin acquires its radical SAM Fe/S cluster to gain antiviral activity are poorly understood. Using co-immunoprecipitation and 55Fe-radiolabeling experiments, we therefore studied the roles of CIA2A, CIA2B, and MMS19 for Fe/S cluster insertion. CIA2B and MMS19 physically interacted with the C terminus of viperin and used CIA1 as the primary viperin-interacting protein. In contrast, CIA2A bound to viperin's N terminus in a CIA1-, CIA2B-, and MMS19-independent fashion. Of note, the observed interaction of both CIA2 isoforms with a single Fe/S target protein is unprecedented in the CIA pathway. 55Fe-radiolabeling experiments with human cells depleted of CIA1, CIA2A, CIA2B, or MMS19 revealed that CIA1, but none of the other CIA factors, is predominantly required for 55Fe/S cluster incorporation into viperin. Collectively, viperin maturation represents a novel CIA pathway with a minimal requirement of the CIA-targeting factors and represents a new paradigm for the insertion of the Fe/S cofactor into a radical SAM protein.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Metalochaperonas/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células HEK293 , Humanos , Imunoprecipitação , Ferro/química , Ferro/metabolismo , Radioisótopos de Ferro , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Metalochaperonas/antagonistas & inibidores , Metalochaperonas/química , Metalochaperonas/genética , Metaloproteínas , Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/genéticaRESUMO
Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 µM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.
Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Hidrazonas/farmacologia , Quelantes de Ferro/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/toxicidade , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Hidrazonas/toxicidade , Quelantes de Ferro/síntese química , Quelantes de Ferro/química , Quelantes de Ferro/toxicidade , Radioisótopos de Ferro , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Ratos , Relação Estrutura-AtividadeRESUMO
Siderophore nutrition tests with Caulobacter crescentus strain NA1000 revealed that it utilized a variety of ferric hydroxamate siderophores, including asperchromes, ferrichromes, ferrichrome A, malonichrome, and ferric aerobactin, as well as hemin and hemoglobin. C. crescentus did not transport ferrioxamine B or ferric catecholates. Because it did not use ferric enterobactin, the catecholate aposiderophore was an effective agent for iron deprivation. We determined the kinetics and thermodynamics of [59Fe]apoferrichrome and 59Fe-citrate binding and transport by NA1000. Its affinity and uptake rate for ferrichrome (equilibrium dissociation constant [Kd ], 1 nM; Michaelis-Menten constant [KM ], 0.1 nM; Vmax, 19 pMol/109 cells/min) were similar to those of Escherichia coli FhuA. Transport properties for 59Fe-citrate were similar to those of E. coli FecA (KM , 5.3 nM; Vmax, 29 pMol/109 cells/min). Bioinformatic analyses implicated Fur-regulated loci 00028, 00138, 02277, and 03023 as TonB-dependent transporters (TBDT) that participate in iron acquisition. We resolved TBDT with elevated expression under high- or low-iron conditions by SDS-PAGE of sodium sarcosinate cell envelope extracts, excised bands of interest, and analyzed them by mass spectrometry. These data identified five TBDT: three were overexpressed during iron deficiency (00028, 02277, and 03023), and 2 were overexpressed during iron repletion (00210 and 01196). CLUSTALW analyses revealed homology of putative TBDT 02277 to Escherichia coli FepA and BtuB. A Δ02277 mutant did not transport hemin or hemoglobin in nutrition tests, leading us to designate the 02277 structural gene as hutA (for heme/hemoglobin utilization).IMPORTANCE The physiological roles of the 62 putative TBDT of C. crescentus are mostly unknown, as are their evolutionary relationships to TBDT of other bacteria. We biochemically studied the iron uptake systems of C. crescentus, identified potential iron transporters, and clarified the phylogenetic relationships among its numerous TBDT. Our findings identified the first outer membrane protein involved in iron acquisition by C. crescentus, its heme/hemoglobin transporter (HutA).
Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caulobacter crescentus/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Ferro/metabolismo , Radioisótopos de Ferro , Proteínas de Membrana/genética , SideróforosRESUMO
Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking. Kidney provides a relevant model for this evaluation because PrP(C) is expressed in the kidney, and â¼370 µg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrP(C) promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of (59)Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP(-/-)) mouse kidney relative to PrP(+/+) controls. Selective in vivo radiolabeling of plasma NTBI with (59)Fe revealed similar results. Expression of exogenous PrP(C) in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of (59)Fe-NTBI and to a smaller extent (59)Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrP(Δ51-89)) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrP(C) to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrP(C) promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism.
Assuntos
FMN Redutase/metabolismo , Ferro/metabolismo , Rim/metabolismo , Proteínas PrPC/metabolismo , Animais , Western Blotting , Linhagem Celular Transformada , Membrana Celular/metabolismo , FMN Redutase/genética , Feminino , Transporte de Íons/genética , Ferro/farmacocinética , Radioisótopos de Ferro , Rim/citologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Proteínas PrPC/genética , Transferrina/metabolismo , Transferrina/farmacocinéticaRESUMO
Commercial iron supplements Monofer(®) and Cosmofer(®) were intrinsically radiolabeled with (59) Fe for the purpose of tracing iron absorption in vivo. Optimized procedures aimed at introducing (59) Fe into the macromolecular construct in a form that was as chemically equivalent to the matrix iron as possible. This was determined by challenging the labeled constructs with diethylenetriaminepentaacetic acid (DTPA) followed by separation by size-exclusion and measurements of radioactivity and iron in the eluted fractions. The final procedures were simple and involved heating aqueous dispersions of the supplements in the presence of [(59) Fe]FeCl3 for 24 h at 95 °C for Monofer, and 85 °C for Cosmofer, resulting in radiochemical yields greater than 94%. High performance size exclusion chromatography, UV-VIS spectroscopy, and dynamic light scattering were used to show that the supplements remained unchanged after radiolabeling, underscoring the applicability of the methodology for radiolabeling commercial iron preparations.
Assuntos
Suplementos Nutricionais , Radioisótopos de Ferro/química , Ferro/administração & dosagem , Ferro/química , Administração Intravenosa , Ferro/metabolismo , Marcação por Isótopo , RadioquímicaRESUMO
Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.
Assuntos
Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Ferro/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , FMN Redutase/metabolismo , Compostos Férricos/metabolismo , Radioisótopos de Ferro , Malatos/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismoRESUMO
The molecular mechanisms of iron trafficking in neurons have not been elucidated. In this study, we characterized the expression and localization of ferrous iron transporters Zip8, Zip14 and divalent metal transporter 1 (DMT1), and ferrireductases Steap2 and stromal cell-derived receptor 2 in primary rat hippocampal neurons. Steap2 and Zip8 partially co-localize, indicating these two proteins may function in Fe(3+) reduction prior to Fe(2+) permeation. Zip8, DMT1, and Steap2 co-localize with the transferrin receptor/transferrin complex, suggesting they may be involved in transferrin receptor/transferrin-mediated iron assimilation. In brain interstitial fluid, transferring-bound iron (TBI) and non-transferrin-bound iron (NTBI) exist as potential iron sources. Primary hippocampal neurons exhibit significant iron uptake from TBI (Transferrin-(59) Fe(3+)) and NTBI, whether presented as (59) Fe(2+) -citrate or (59) Fe(3+) -citrate; reductase-independent (59) Fe(2+) uptake was the most efficient uptake pathway of the three. Kinetic analysis of Zn(2+) inhibition of Fe(2+) uptake indicated that DMT1 plays only a minor role in the uptake of NTBI. In contrast, localization and knockdown data indicate that Zip8 makes a major contribution. Data suggest also that cell accumulation of (59) Fe from TBI relies at least in part on an endocytosis-independent pathway. These data suggest that Zip8 and Steap2 play a major role in iron accumulation from NTBI and TBI by hippocampal neurons. Analysis of the expression and localization of known iron uptake transporters demonstrated that Zip8 makes a major contribution to iron accumulation in primary cultures of rat embryonic hippocampal neurons. These cells exhibit uptake pathways for ferrous and ferric iron (non-transferrin-bound iron, NTBI in figure) and for transferrin-bound iron; the ferrireductases Steap2 and SDR2 support the uptake of ferric iron substrates. Zip8 and Steap2 are strongly expressed in the plasma membrane of both soma and processes, implying a crucial role in iron accumulation from NTBI and transferrin-bound iron (TBI) by hippocampal neurons.
Assuntos
Hipocampo/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Neurônios/metabolismo , Transferrina/metabolismo , Animais , Membrana Celular/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Radioisótopos de Ferro , Metais/farmacologia , Neurônios/efeitos dos fármacos , Gravidez , Cultura Primária de Células , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers.
Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Radioisótopos de Ferro/toxicidade , Miócitos Cardíacos/efeitos da radiação , Radioterapia de Alta Energia/efeitos adversos , Transdução de Sinais/efeitos da radiação , Animais , Células Cultivadas , Análise por Conglomerados , Ativação Enzimática , Fibrose , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Medição de Risco , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos da radiação , Transcriptoma/efeitos da radiação , Irradiação Corporal TotalRESUMO
Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5 days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1 day) allocated into the leaf veins, and after 5 days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III) -chelate reductase (FRO), a Fe(2+) transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.
Assuntos
Cucumis sativus/metabolismo , Fertilizantes , Deficiências de Ferro , Folhas de Planta/metabolismo , Substâncias Húmicas , Hibridização In Situ , Ferro/administração & dosagem , Radioisótopos de Ferro , Sideróforos , Espectrometria por Raios X , SíncrotronsRESUMO
Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.
Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Compostos Férricos/farmacocinética , Radioisótopos de Ferro/farmacocinética , Compostos Férricos/metabolismo , Marcação por Isótopo , Espectrometria de Massas , Estrutura Molecular , Ligação Proteica , Sideróforos/metabolismoRESUMO
Iron transport has been linked to the virulence of Brucella strains in both natural and experimental hosts. The genes designated BAB2_0837-0840 in the Brucella abortus 2308 genome sequence are predicted to encode a CupII-type ferrous iron transporter homologous to the FtrABCD transporter recently described in Bordetella. To study the role of the Brucellaâ FtrABCD in iron transport, an isogenic ftrA mutant was constructed from B. abortus 2308. Compared with the parental strain, the B. abortusâ ftrA mutant displays a decreased capacity to use non-haem iron sources in vitro, a growth defect in a low iron medium that is enhanced at pH 6, and studies employing radiolabelled FeCl3 confirmed that FtrABCD transports ferrous iron. Transcription of the ftrA gene is induced in B. abortus 2308 in response to iron deprivation and exposure to acid pH, and similar to other Brucella iron acquisition genes that have been examined the iron-responsiveness of ftrA is dependent upon the iron response regulator Irr. The B. abortusâ ftrA mutant exhibits significant attenuation in both cultured murine macrophages and experimentally infected mice, supporting the proposition that ferrous iron is a critical iron source for these bacteria in the mammalian host.
Assuntos
Brucella abortus/metabolismo , Brucella abortus/patogenicidade , Brucelose/microbiologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Virulência/metabolismo , Animais , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Brucelose/patologia , Células Cultivadas , Meios de Cultura/química , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Radioisótopos de Ferro/metabolismo , Marcação por Isótopo , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Fatores de Virulência/genéticaRESUMO
Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore-ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used (55)Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. (55)Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore-ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation.
Assuntos
Francisella tularensis/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sideróforos/metabolismo , Francisella tularensis/genética , Francisella tularensis/crescimento & desenvolvimento , Radioisótopos de Ferro/metabolismo , Marcação por Isótopo , Proteínas de Membrana Transportadoras/genéticaRESUMO
Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.
Assuntos
Angiotensina II/fisiologia , Ferro/metabolismo , Transferrina/metabolismo , Angiotensina II/farmacologia , Animais , Antígenos CD/biossíntese , Proteínas de Transporte de Cátions/biossíntese , Células Cultivadas , Radioisótopos de Ferro/metabolismo , Masculino , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores da Transferrina/biossínteseRESUMO
The role of urea in the translocation of (59) Fe from (59) FeEDTA-treated leaves was studied in durum wheat (Triticum durum) grown for 2 weeks in nutrient solution and until grain maturation in soil culture. Five-cm long tips of the first leaf of young wheat seedlings or flag leaves at the early milk stage were immersed twice daily for 10 s in (59) FeEDTA solutions containing increasing amounts of urea (0, 0.2, 0.4 and 0.8% w/v) over 5 days. In the experiment with young wheat seedlings, urea inclusion in the (59) FeEDTA solution increased significantly translocation of (59) Fe from the treated leaf into roots and the untreated part of shoots. When (59) Fe-treated leaves were induced into senescence by keeping them in the dark, there was a strong (59) Fe translocation from these leaves. Adding urea to the (59) Fe solution did not result in an additional increase in Fe translocation from the dark-induced senescent leaves. In the experiment conducted in the greenhouse in soil culture until grain maturation, translocation of (59) Fe from the flag leaves into grains was also strongly promoted by urea, whereas (59) Fe translocation from flag leaves into the untreated shoot was low and not affected by urea. In conclusion, urea contributes to transportation of the leaf-absorbed Fe into sink organs. Probably, nitrogen compounds formed after assimilation of foliar-applied urea (such as amino acids) contributed to Fe chelation and translocation to grains in wheat.
Assuntos
Ácido Edético/farmacologia , Compostos Férricos/farmacologia , Compostos Ferrosos/farmacologia , Triticum/efeitos dos fármacos , Ureia/farmacologia , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Edético/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Quelantes de Ferro/farmacologia , Radioisótopos de Ferro/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Soluções/farmacologia , Triticum/metabolismo , Triticum/fisiologiaRESUMO
Despite recent advance in the study of the nature of storage iron turnover, a comprehensive analysis remains lacking. This study aimed to clarify the nature of storage iron turnover. Ferritin-hemosiderin iron transformation rate and the standard normal storage iron turnover rate were utilized in this study to describe the mechanism of iron absorption in relation to ferritin and hemosiderin iron turnover. The synchronization of radioiron uptake peaks by bone marrow and liver indicates that the distribution of radioiron is proportional to the pre-existing iron levels in organs at 24 h after radioiron injection. Moreover, the synchronization indicates the independence of iron mass from red cell precursors in acquiring plasma iron. Thus, the erythron does not dominate the radioiron uptake process. The inverse correlation between transformation rate and the amount of pre-existing iron storage implies that the intra-storage iron turnover is active in iron deficiency, but inactive in iron overload. The decreased ferritin/hemosiderin iron ratio in chronic hepatitis C (CHC) with normal iron storage suggests a trend of iron transformation from ferritin into hemosiderin. The correlation between the pretreatment iron storage and the speed of rebound in CHC implies that the vacant iron-storing rooms in iron-removed cells have a potential to increase iron absorption. This study presents new insights into the turnover of stored iron to enhance our understanding of iron metabolism in various hematologic disorders.
Assuntos
Ferritinas , Hemossiderina , Ferro , Fígado , Hemossiderina/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Humanos , Fígado/metabolismo , Animais , Masculino , Medula Óssea/metabolismo , Radioisótopos de FerroRESUMO
Iron acquisition is critical to the growth and virulence of Legionella pneumophila. Previously, we found that L. pneumophila uses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted by L. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability of L. pneumophila and other species of Legionella to take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing of L. pneumophila culture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis of L. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.