RESUMO
Apart from prevention using vaccinations, the management options for COVID-19 remain limited. In retrospective cohort studies, use of famotidine, a specific oral H2 receptor antagonist (antihistamine), has been associated with reduced risk of intubation and death in patients hospitalized with COVID-19. In a case series, nonhospitalized patients with COVID-19 experienced rapid symptom resolution after taking famotidine, but the molecular basis of these observations remains elusive. Here we show using biochemical, cellular, and functional assays that famotidine has no effect on viral replication or viral protease activity. However, famotidine can affect histamine-induced signaling processes in infected Caco2 cells. Specifically, famotidine treatment inhibits histamine-induced expression of Toll-like receptor 3 (TLR3) in SARS-CoV-2 infected cells and can reduce TLR3-dependent signaling processes that culminate in activation of IRF3 and the NF-κB pathway, subsequently controlling antiviral and inflammatory responses. SARS-CoV-2-infected cells treated with famotidine demonstrate reduced expression levels of the inflammatory mediators CCL-2 and IL6, drivers of the cytokine release syndrome that precipitates poor outcome for patients with COVID-19. Given that pharmacokinetic studies indicate that famotidine can reach concentrations in blood that suffice to antagonize histamine H2 receptors expressed in mast cells, neutrophils, and eosinophils, these observations explain how famotidine may contribute to the reduced histamine-induced inflammation and cytokine release, thereby improving the outcome for patients with COVID-19.
Assuntos
Famotidina/farmacologia , Antagonistas dos Receptores Histamínicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Células A549 , Sítios de Ligação , Células CACO-2 , Quimiocina CCL2/metabolismo , Proteases 3C de Coronavírus/metabolismo , Células HeLa , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , SARS-CoV-2/fisiologia , Transdução de Sinais , Receptor 3 Toll-Like/química , Replicação ViralRESUMO
Toll-like receptor 3 (TLR3) is an endosomal receptor involved in initiating immune responses upon viral infection by directly recognizing double-stranded RNA (dsRNA). As one of the most heavily glycosylated TLR family members, the role of glycan at N413 of TLR3 in ligand recognition has been in debate for decades. Herein, to investigate the role of glycans in TLR3, specifically at amino acid residue N413, molecular dynamic simulations were performed. The loop region of LRR12 (residues 323-355), which protrudes from the dsRNA binding TLR3 lateral surface was found to be vital for interacting with dsRNA via the formation of hydrogen bonds. The glycan at N413 not only prevented dsRNA from being exposed to the bulk water during the binding process but further stabilized dsRNA in the TLR3 binding site. When N413 was in the glycosylated form, the binding free energy of TLR3 interacting with dsRNA was significantly lower than that of TLR3 in the N413 unglycosylated form. Additionally, as the glycan at N413 functioned to alter the dynamics of the dsRNA binding process, its flexibility was meanwhile influenced by dsRNA. In all, these results demonstrate that the size, length, and branch of glycan at N413 affect the thermodynamics and dynamics of TLR3 recognition with dsRNA. This study further extends our understanding of the biological role of glycans in the innate immune recognition of dsRNA by TLR3 and provides a new perspective for modulating TLR3 function.
Assuntos
Simulação de Dinâmica Molecular , Receptor 3 Toll-Like , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , RNA de Cadeia Dupla , Sítios de Ligação , PolissacarídeosRESUMO
A new Cu(II) coordination polymer (CP) of [Cu5(µ3-OH)2(bcpt)4(bib)2] (1, bib = 1,4-bis(1-imidazoly)benzene and H2bcpt = 3,5-bis(3'-carboxyphenyl)-1,2,4-triazole) was synthesized by reaction of Cu(NO3)2·3H2O reacting with 3,5-bis(3'-carboxyphenyl)-1,2,4-triazole in the existence of 1,4-bis(1-imidazoly)benzene as the second ligand. The treatment activity of the compound on influenza A virus induced chronic obstructive pulmonary disease (COPD) was evaluated. First, the biological function of the lung was assessed by measuring the partial pressure for the carbon dioxide (PaCO2) and oxygen (PaO2) via the analysis of blood gas. Next, the inflammatory cytokines released by alveolar epithelial cells were determined via the ELISA test kit. In addition to this, the real-time RT-PCR was carried out to determine the inflammatory response relative expression in the alveolar epithelial cells. Finally, the relative expression of the TLR3 on the alveolar epithelial cells was revealed by western blot. Possible binding patterns were acquired from the post scoring software and molecular docking, which exhibited two possible functional side chain binding sites of TLR3 to compounds binding, possibly offering distinct regulatory mechanisms.
Assuntos
Células Epiteliais Alveolares/química , Vírus da Influenza A , Doença Pulmonar Obstrutiva Crônica , Células Epiteliais , Expressão Gênica , Humanos , Ligantes , Simulação de Acoplamento Molecular , Polímeros/química , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismoRESUMO
The present study provides the first multiepitope vaccine construct using the 3CL hydrolase protein of SARS-CoV-2. The coronavirus 3CL hydrolase (Mpro) enzyme is essential for proteolytic maturation of the virus. This study was based on immunoinformatics and structural vaccinology strategies. The design of the multiepitope vaccine was built using helper T-cell and cytotoxic T-cell epitopes from the 3CL hydrolase protein along with an adjuvant to enhance immune response; these are joined to each other by short peptide linkers. The vaccine also carries potential B-cell linear epitope regions, B-cell discontinuous epitopes, and interferon-γ-inducing epitopes. Epitopes of the constructed multiepitope vaccine were found to be antigenic, nonallergic, nontoxic, and covering large human populations worldwide. The vaccine construct was modeled, validated, and refined by different programs to achieve a high-quality three-dimensional structure. The resulting high-quality model was applied for conformational B-cell epitope selection and docking analyses with toll-like receptor-3 for understanding the capability of the vaccine to elicit an immune response. In silico cloning and codon adaptation were also performed with the pET-19b plasmid vector. The designed multiepitope peptide vaccine may prompt the development of a vaccine to control SARS-CoV-2 infection.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Proteases 3C de Coronavírus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Receptor 3 Toll-Like/imunologia , Sequência de Aminoácidos , Sítios de Ligação , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Clonagem Molecular/métodos , Biologia Computacional/métodos , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Vetores Genéticos/química , Vetores Genéticos/imunologia , Antígenos HLA/química , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunogenicidade da Vacina , Interferon gama/genética , Interferon gama/imunologia , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Linfócitos T Citotóxicos/química , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Linfócitos T Auxiliares-Indutores/química , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Interface Usuário-Computador , Vacinas de Subunidades AntigênicasRESUMO
Toll-like receptor 3 (TLR3) provides the host with antiviral defense by initiating an immune signaling cascade for the production of type I interferons. The X-ray structures of isolated TLR3 ectodomain (ECD) and transmembrane (TM) domains have been reported; however, the structure of a membrane-solvated, full-length receptor remains elusive. We investigated an all-residue TLR3 model embedded inside a phospholipid bilayer using molecular dynamics simulations. The TLR3-ECD exhibited a ~30°-35° tilt on the membrane due to the electrostatic interaction between the N-terminal subdomain and phospholipid headgroups. Although the movement of dsRNA did not affect the dimer integrity of TLR3, its sugar-phosphate backbone was slightly distorted with the orientation of the ECD. TM helices exhibited a noticeable tilt and curvature but maintained a consistent crossing angle, avoiding the hydrophobic mismatch with the bilayer. Residues from the αD helix and the CD and DE loops of the Toll/interleukin-1 receptor (TIR) domains were partially absorbed into the lower leaflet of the bilayer. We found that the previously unknown TLR3-TIR dimerization interface could be stabilized by the reciprocal contact between αC and αD helices of one subunit and the αC helix and the BB loop of the other. Overall, the present study can be helpful to understand the signaling-competent form of TLR3 in physiological environments.
Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Receptor 3 Toll-Like/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Relação Estrutura-Atividade , Receptor 3 Toll-Like/metabolismoRESUMO
Human T-lymphotropic virus (HTLV), the first human retrovirus has been discovered which is known to cause the age-old assassinating disease HTLV-1 associated myelopathy. Cancer caused by this virus is adult T cell leukemia/lymphoma which targets 10-20 million throughout the world. The effect of this virus extends to the fact that it causes chronic disease to the spinal cord resulting in loss of sensation and further causes blood cancer. So, to overcome the complications, we designed a subunit vaccine by the assimilation of B-cell, cytotoxic T-lymphocyte , and helper T-lymphocyte epitopes. The epitopes were joined together along with adjuvant and linkers and a vaccine was fabricated which was further subjected to 3D modeling. The physiochemical properties, allergenicity, and antigenicity were evaluated. Molecular docking and dynamics were performed with the obtained 3D model against toll like receptor (TLR-3) immune receptor. Lastly, in silico cloning was performed to ensure the expression of the designed vaccine in pET28a(+) expression vector. The future prospects of the study entailed the in vitro and in vivo experimental analysis for evaluating the immune response of the designed vaccine construct.
Assuntos
Algoritmos , Biologia Computacional/métodos , Desenho Assistido por Computador , Desenho de Fármacos , Epitopos , Infecções por HTLV-I/prevenção & controle , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Proteínas Virais/imunologia , Vacinas Virais/farmacologia , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Imunogenicidade da Vacina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Proteínas Virais/química , Proteínas Virais/genética , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
Toll-like receptor 3 (TLR3), a pathogen recognition receptor of the innate immune response, recognizes and is activated by double-stranded RNA (dsRNA), which is indicative of viral exposure. A sensor design exercise was conducted, using surface plasmon resonance detection, through the examination of several immobilization approaches for TLR3 as a biorecognition element (BRE) onto a modified gold surface. To examine the TLR3-dsRNA interaction a synthetic analogue mimic, poly (I:C), was used. The interaction binding characteristics were determined and compared to literature data to establish the optimal immobilization method for the TLR3 BRE. A preliminary evaluation of the efficacy of the selected TLR3 surface as a broad-spectrum viral biosensor was also performed. Amine-coupling was found to be the most reliable method for manufacturing repeatable and consistent TLR3 BRE sensor surfaces, although this immobilization schema is not tailored to place the receptor in a spatially-specific orientation. The equilibrium dissociation constant (KD) measured for this immobilized TLR3-poly (I:C) interaction was 117⯱â¯3.30 pM. This evaluation included a cross-reactivity study using a selection of purified E. coli and synthetic double- and single-stranded nucleic acids. The results of this design exercise and ligand binding study will inform future work towards the development of a broad-spectrum viral sensor device.
Assuntos
Técnicas Biossensoriais/métodos , Poli I-C/química , Receptor 3 Toll-Like/química , Ácidos Nucleicos , Ligação Proteica , Ressonância de Plasmônio de SuperfícieRESUMO
Nucleic acids carrying pathogen-associated molecular patterns trigger innate immune responses and are used to activate host immunity. Although synthetic nucleic acids have been used for that purpose, they have shown limitations for in vivo and clinical applications. To address this issue, we tested a naturally occurring dsRNA extracted from rice bran (rb-dsRNA) and characterized it as a potent ligand of TLR3 and MDA5. In this study, intranasal administration of rb-dsRNA induced production of type I IFNs by alveolar macrophages and protected mice from morbidity and mortality resulting from respiratory virus infection, such as influenza A virus. This protection was completely absent in mice lacking both TRIF and MDA5, indicating the essential role of TLR3- and MDA5-dependent pathways. Interestingly, IFNAR1-deficient mice retained residual antiviral protection, which was abolished by pharmacological inhibition of caspase 1, but not IL-1ß signaling. In fact, rb-dsRNA activated caspase 1 via TRIF, resulting in the release of IL-1ß and LDH. In addition to the direct antiviral activity, rb-dsRNA modulated the immune cell population in the lungs by repopulating virus-depleted alveolar macrophages. Our data demonstrate that rb-dsRNA orchestrates IFN-dependent and -independent direct antiviral protection and that it is a potent immune stimulator modulating antiviral immunity in the lungs. These findings open doors to a range of precise immune-modulating studies and therapeutic options.
Assuntos
Antivirais/isolamento & purificação , Vírus da Influenza A/imunologia , Interferon Tipo I/imunologia , Infecções por Orthomyxoviridae/imunologia , Oryza/genética , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/isolamento & purificação , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Antivirais/imunologia , Inibidores de Caspase/administração & dosagem , Imunidade Inata , Interferon Tipo I/biossíntese , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/deficiência , Helicase IFIH1 Induzida por Interferon/genética , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/virologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Oryza/química , Plantas/química , Plantas/genética , RNA de Cadeia Dupla/administração & dosagem , RNA de Cadeia Dupla/farmacologia , Receptor de Interferon alfa e beta/deficiência , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/químicaRESUMO
Extensive research performed on Toll-like receptor (TLR) signaling has identified residues in the Toll/interleukin-1 receptor (TIR) domains that are essential for its proper functioning. Among these residues, those in BB loop are particularly significant as single amino acid mutations in this region can cause drastic changes in downstream signaling. However, while the effect of these mutations on the function is well studied (like the P681H mutation in TLR2, the A795P mutation in TLR3, and the P714H mutation in TLR4), their influence on the dynamics and inter-residue networks is not well understood. The effects of local perturbations induced by these mutations could propagate throughout the TIR domain, influencing interactions with other TIR domain-containing proteins. The identification of these subtle changes in inter-residue interactions can provide new insights and structural rationale for how single-point mutations cause drastic changes in TIR-TIR interactions. We employed molecular dynamics simulations and protein structure network (PSN) analyses to investigate the structural transitions with special emphasis on TLR2 and TLR3. Our results reveal that phosphorylation of the Tyr 759 residue in the TIR domain of TLR3 introduces rigidity to its BB loop. Subtle differences in the intra BB loop hydrogen bonding network between TLR3 and TLR2 are also observed. The PSN analyses indicate that the TIR domain is highly connected and pinpoints key differences in the inter-residue interactions between the wild-type and mutant TIR domains, suggesting that TIR domain structure is prone to allosteric effects, consistent with the current view of the influence of allostery on TLR signaling.
Assuntos
Simulação de Dinâmica Molecular , Receptor 2 Toll-Like/química , Receptor 3 Toll-Like/química , Sítios de Ligação , Humanos , Fosforilação , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
The Toll-like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen-associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain-containing proteins. Mutations in the BB loop of the Toll-like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lpsd mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain-containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein-protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild-type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways.
Assuntos
Mutação Puntual , Multimerização Proteica , Receptores Toll-Like/química , Receptores Toll-Like/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Estabilidade Proteica , Receptor 1 Toll-Like/química , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismoRESUMO
Toll-like receptors (TLRs) are important components of innate immunity. TLRs recognize pathogen-associated molecular patterns (PAMPs) and initiate downstream signaling pathways in response. In present study, we report the identification of two TLRs from gibel carp (Carassius auratus gibelio), TLR2 and TLR3 (designated CagTLR2 and CagTLR3, respectively). We report on the genomic structures and mRNA expression patterns of CagTLR2 and CagTLR3. Five exons and four introns were identified from the genomic DNA sequence of CagTLR3 (4749 bp in total length); this genomic organization is similar to that of TLR3 in zebrafish and human. However, only one intron was identified from the CagTLR2 genomic locus (3166 bp in total length); this unique genomic organization of CagTLR2 is different from that of TLR2 in fish and humans. The cDNAs of CagTLR2 and CagTLR3 encoded 791 and 904 amino acid residues, respectively. CagTLR2 and CagTLR3 contained two distinct structural/functional motifs of the TLR family: a leucine-rich repeat (LRR) domain in the extracellular portion and a toll/interleukin-1 receptor (TIR) domain in the intracellular portion. The positions of critical amino acid residues involed in PAMP recognition and signaling pathway transduction in mammalian TLRs were conserved in CagTLR2 and CagTLR3. Phylogenetic analysis revealed a closer clustering of CagTLR2 and CagTLR3 with TLRs from freshwater fish than with marine fish species. In healthy gibel carp, transcripts of these genes were detected in all examined tissues, and high expression levels of CagTLR2 and CagTLR3 were observed in liver and brain, respectively. Following injection with CyHV-2, expression levels of CagTLR2 and CagTLR3 were significantly upregulated in the spleens of gibel carp after three days, and CagTLR3 transcript levels were rapidly increased in head kidney after 12 h. These results suggest that CagTLR2 and CagTLR3 are functionally involved in the induction of antiviral immune response.
Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Carpa Dourada/genética , Carpa Dourada/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência/veterinária , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologiaRESUMO
Toll-like receptors (TLRs) play important roles in fish innate immune and are involved in the defense process of bacteria invasion. In the present study, the full-length cDNA of TLR3 from the sea perch, Lateolabrax japonicus, was cloned and characterized. The full length of LjTLR3 cDNA was 3265 bp including an open reading frame of 2679 bp encoding a peptide of 922 amino acids. Tissues distribution analysis indicated that LjTLR3 showed a tissue-specific variation with high expression in spleen, head-kidney and liver. In order to investigate LjTLR3 functions against bacteria infection, the expression patterns of LjTLR3 after Vibrio harveyi and Streptococcus agalactiae challenge were detected by qRT-PCR, and the results showed that LjTLR3 was significant up-regulated after both bacteria stimulation in head-kidney, spleen and liver in a time-depended manner. Furthermore, the results by in situ hybridization experiments showed that positive signals of LjTLR3 mRNA in infected spleen and head-kidney were more numerous than that in the control group. In addition, intracellular localization revealed that LjTLR3 is distributed in the cytoplasm. In summary, these findings suggest that LjTLR3 was involved in the immune process under bacteria infection. This study would benefit to further clarify the roles of fish TLRs in the immune process and contribute to further study on enhancing disease resistance of L. japonicus.
Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Perciformes/genética , Perciformes/imunologia , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/fisiologia , Receptor 3 Toll-Like/química , Vibrio/fisiologia , Vibrioses/imunologiaRESUMO
Necroptosis, or caspase-independent programmed cell death, is known to be involved in various pathological conditions, such as ischemia/reperfusion injury, myocardial infarction, atherosclerosis, and inflammatory bowel diseases. Although several inhibitors of necroptosis have been identified, none of them are currently in clinical use. In the present study, we identified a new compound, 4-({[5-(4-aminophenyl)-4-ethyl-4H-1,2,4-triazol-3-yl]sulfanyl}methyl)-N-(1,3-thiazol-2-yl) benzamide (NTB451), with significant inhibitory activity on the necroptosis induced by various triggers, such as tumor necrosis factor-α (TNF-α) and toll-like receptor (TLR) agonists. Mechanistic studies revealed that NTB451 inhibited phosphorylation and oligomerization of mixed lineage kinase domain like (MLKL), and this activity was linked to its inhibitory effect on the formation of the receptor interacting serine/threonine-protein kinase 1 (RIPK1)-RIPK3 complex. Small interfering RNA (siRNA)-mediated RIPK1 knockdown, drug affinity responsive target stability assay, and molecular dynamics (MD) simulation study illustrated that RIPK1 is a specific target of NTB451. Moreover, MD simulation showed a direct interaction of NTB451 and RIPK1. Further experiments to ensure that the inhibitory effect of NTB451 was restricted to necroptosis and NTB451 had no effect on nuclear factor-κB (NF-κB) activation or apoptotic cell death upon triggering with TNF-α were also performed. Considering the data obtained, our study confirmed the potential of NTB451 as a new necroptosis inhibitor, suggesting its therapeutic implications for pathological conditions induced by necroptotic cell death.
Assuntos
Apoptose/efeitos dos fármacos , Imidazóis/farmacologia , Necrose/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , NF-kappa B/metabolismo , Necrose/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Defects in genes of the Toll-like receptor 3 (TLR3) pathway are associated with susceptibility to herpes simplex virus type 1 encephalitis (HSE). We analyzed a cohort of 11 adult Italian patients in whom viral encephalitis developed. We detected 2 rare missense mutations in TLR3: 1 in a patient with HSE (p.Leu297Val) and 1 in a patient with varicella-zoster virus encephalitis (p.Leu199Phe). Both mutations are extremely rare in human populations and have pathogenicity scores highly suggestive of a functional effect. Data herein expand the phenotypic spectrum of TLR3 mutations to varicella-zoster virus encephalitis and support the role of TLR3 genetic defects as risk factors for HSE in adults.
Assuntos
Encefalite por Varicela Zoster/genética , Herpes Simples/genética , Mutação/genética , Receptor 3 Toll-Like/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Herpesvirus Humano 3 , Humanos , Masculino , Pessoa de Meia-Idade , Simplexvirus , Receptor 3 Toll-Like/químicaRESUMO
Toll signaling is essential for expression of immune genes which are important for defense against bacterial, fungal and viral infections in invertebrates. Although several toll genes have been identified in the crustaceans, none of them has been investigated in freshwater crab Sinopotamon henanense. Moreover, the effect of cadmium (Cd) on toll gene expression has never been examined on the freshwater crabs which live in the sediments and are prone to heavy metal bioaccumulation. Our transcriptomic analysis of hepatopancreas tissue reveals that toll3 gene expression has been decreased when treated with Cd. In this study, we cloned one toll gene (hereby designated Shtoll3) from the crab. The full-length cDNA of Shtoll3 was 4488 bp, with an ORF of 3693 bp encoding a putative protein of 1230 amino acids, a 5'-untranslated region of 414 bp and a 3'-untranslated region of 781 bp. Phylogenetic analysis showed that ShToll3 was clustered into the group of DmToll8. The tissue distribution results showed that Shtoll3 was expressed widely in different tissues, with the highest in gills, and the lowest in hemocytes. Shtoll3 expression was down-regulated only in midguts after Aeromonas hydrophila infection. With Cd presence, Shtoll3 expression in response to A. hydrophila were up-regulated in midguts and gills, which was further confirmed by western blotting analysis. Moreover, the mRNA level of two antimicrobial peptides (AMPs) crustin and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll3, were analysised. Thus, we conclude that Cd changes the susceptibility of Shtoll3 to A. hydrophila infection in gills and midguts. This suggest that Shtoll3 may contribute to the innate immune defense of S. henanense to A. hydrophila and Cd can modify the immune function in epithelium.
Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Receptor 3 Toll-Like/químicaRESUMO
The innate immune system recognizes pathogens through pattern recognition receptors (PRRs), and toll-like receptors (TLRs) are one of the most important PRRs. TLR3 is a unique member of TLR family that recognizes double-stranded RNA (dsRNA), a viral replication intermediate. There is a variation in its response among diverse fish species toward the same stimulants. We identified and cloned TLR3 from Indian snow trout, Schizothorax richardsonii and carried out its expression analysis in un-induced and poly (I:C) challenged fish. It has an open reading frame (ORF) of 2712 bases that encodes a polypeptide of 904 amino acids. The molecular weight of the polypeptide was predicted to be 102.4482 kDa with an isoelectric point of 7.40. Quantitative real time PCR (qRT-PCR) was carried out after 24 hours of poly (I:C) treatment and expression of TLR3 was analyzed in different tissues. As compared with untreated fish the poly (I:C) challenged fish revealed significantly high expression of TLR3 in kidney followed by liver and gills.
Assuntos
Cyprinidae/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/metabolismo , Animais , Clonagem Molecular , Regulação da Expressão Gênica/fisiologia , Índia , Especificidade de Órgãos , Distribuição Tecidual , Receptor 3 Toll-Like/genéticaRESUMO
It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes.
Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Imunidade Inata/genética , Aminoácidos/metabolismo , Animais , Genética Populacional , Humanos , Camundongos , Filogenia , Estrutura Terciária de Proteína , Seleção Genética , Especificidade da Espécie , Receptor 3 Toll-Like/químicaRESUMO
LL-37 is a peptide secreted by human epithelial cells that can lyse bacteria, suppress signaling by Toll-like receptor 4 (TLR4), and enhance signaling to double-stranded RNA (dsRNA) by TLR3. How LL-37 interacts with dsRNA to affect signal transduction by TLR3 is not completely understood. We determined that LL-37 binds dsRNA and traffics to endosomes and releases the dsRNA in a pH-dependent manner. Using dynamic light scattering spectroscopy and cell-based FRET experiments, LL-37 was found to form higher order complexes independent of dsRNA binding. Upon acidification LL-37 will dissociate from a larger complex. In cells, LL-37 has a half-live of â¼ 1 h. LL-37 half-life was increased by inhibiting endosome acidification or inhibiting cathepsins, which include proteases whose activity are activated by endosome acidification. Residues in LL-37 that contact poly(I:C) and facilitate oligomerization in vitro were mapped. Peptide LL-29, which contains the oligomerization region of LL-37, inhibited LL-37 enhancement of TLR3 signal transduction. LL-29 prevented LL-37 · poly(I:C) co-localization to endosomes containing TLR3. These results shed light on the requirements for LL-37 enhancement of TLR3 signaling.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos/química , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Sítios de Ligação , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peptídeos/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Regulação para Cima , CatelicidinasRESUMO
Double-stranded RNA (dsRNA) induces phosphorylation of Toll-like receptor 3 (TLR3) at tyrosine 759 and subsequently triggers signaling pathways to promote interferon-ß (IFN-ß) production. In this study, we found that dsRNA stimulation induces biphasic TLR3 Tyr-759 phosphorylation in macrophages. In addition to the immediate TLR3 Tyr-759 phosphorylation, we identified a second wave of Tyr-759 phosphorylation accompanied by an increase of both Src and ifn-ß transcription in the later phase of dsRNA stimulation. Interestingly, Src phosphorylated TLR3 Tyr-759 in vitro and in vivo. However, knockdown of Src abolished the late phase of TLR3 Tyr-759 phosphorylation and decreased the nuclear accumulation of interferon regulatory factors 3 and 7 (IRF3 and -7) and IFN-ß production. Reintroduction of Src restored all of these molecular changes. Notably, via down-regulation of Src, dsRNA-elicited TLR3 Tyr-759 phosphorylation, the nuclear accumulation of IRF3/IRF7, and IFN-ß generation were inhibited in inducible nitric-oxide synthase (iNOS)-null macrophages. TLR3 knockdown destabilized Src and reduced the nuclear level of IRF3/IRF7 and IFN-ß production in macrophages exposed to LPS (a TLR4 ligand known to induce Src and IFN-ß expression). Ectopic expression of wild type TLR3, but not its 759-phenylalanine mutant, restored Src activity and ifn-ß transcription. Taken together, these results suggested an essential role of the iNOS/Src/TLR3 axis in IFN-ß production in macrophages.
Assuntos
Interferon beta/biossíntese , Macrófagos Peritoneais/citologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/metabolismo , Tirosina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Transformação Celular Viral , Regulação da Expressão Gênica , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/genética , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , RNA de Cadeia Dupla/metabolismo , Transdução de SinaisRESUMO
Viral infections are one of the major challenges in aquaculture production, and considered as the potential threat for fish farming. Toll-like receptor (TLR) 3 and TLR22 are highly specialized innate immune receptors that recognize double-stranded (ds)-RNA of viruses resulting in the induction of innate immunity. The existence of TLR3 and TLR22 only in aquatic animals indicates their distinctive characteristics in viral infection; however, the studies in exploring their structural features and dsRNA binding mechanism are still elusive. Here, we studied the structural and functional differentiations of TLR3 and TLR22 in zebrafish by employing comparative modeling and molecular dynamics simulation. Comparative structural analysis revealed a distinct spatial arrangement of TLR22 ectodomain with a flattened horseshoe-shape conformation as compared to other TLRs. Essential dynamics studies showed that unlike TLR3, TLR22 possessed a prominent motion, elasticity and twisting at both terminus separated by a distance equivalent to the length of a short-sized dsRNA. Interaction analysis of polyinosinic:polycytidylic acid (poly I:C) and dsRNA depicted leucine-rich-repeats (LRR)2-3 and LRR18-19 (in TLR3) and LRRNT-LRR3 and LRR22-24 (in TLR22) as the potential binding sites. The short-sized dsRNA binds tightly across its full-length with TLR22-monomer, and suggested that TLR22 dimer may sense long-sized dsRNA. Binding energy (BE) calculation using MM/PBSA method from the TLR3- and TLR22-ligand complexes revealed an adequate binding affinity between TLR22-monomer and dsRNA as like as TLR3-dimer-dsRNA complex. Mutagenesis and BE computation of key residues suggested their involvement in dsRNA recognition. These findings can be helpful for therapeutic applications against viral diseases in fish.