Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 32(4): 573-582, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29582229

RESUMO

Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.


Assuntos
Simulação por Computador , Simulação de Acoplamento Molecular/métodos , Receptores CCR/agonistas , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Ligantes , Estrutura Molecular , Análise de Componente Principal , Receptores CXCR4/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
2.
J Leukoc Biol ; 109(2): 373-376, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32480426

RESUMO

Atypical chemokine receptors (ACKRs) have emerged as important regulators or scavengers of homeostatic and inflammatory chemokines. Among these atypical receptors, ACKR4 is reported to bind the homeostatic chemokines CCL19, CCL21, CCL25 and CXCL13. In a recent study by Matti et al., the authors show that ACKR4 is also a receptor for CCL20, previously established to bind to CCR6 only. They provide convincing evidence that, just as for its other chemokine ligands, ACKR4 rapidly internalizes CCL20 both in vitro and in vivo. Independently of this discovery, we undertook a screening program aiming at reassessing the activity of the 43 human chemokines toward ACKR4 using a highly sensitive ß-arrestin recruitment assay. This systematic analysis confirmed CCL20 as a new agonist ligand for ACKR4 in addition to CCL19, CCL21, and CCL25. Furthermore, CCL22, which plays an important role in both homeostasis and inflammatory responses, and is known as a ligand for CCR4 and ACKR2 was found to also act as a potent partial agonist of ACKR4. In contrast, agonist activity of CXCL13 toward ACKR4 was disproved. This independent wide-range systematic study confirms the pairing of CCL20 with ACKR4 newly discovered by Matti and co-authors, and further refines the spectrum of chemokines activating ACKR4.


Assuntos
Quimiocina CCL20/metabolismo , Quimiocina CCL22/metabolismo , Quimiocina CXCL13/metabolismo , Receptores CCR/agonistas , Receptores CCR/metabolismo , Sequência de Aminoácidos , Quimiocina CCL22/química , Humanos , Ligantes , Filogenia , Ligação Proteica , beta-Arrestinas/metabolismo
3.
J Med Chem ; 55(18): 8164-77, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22957890

RESUMO

Among 18 human chemokine receptors, CCR1, CCR4, CCR5, and CCR8 were activated by metal ion Zn(II) or Cu(II) in complex with 2,2'-bipyridine or 1,10-phenanthroline with similar potencies (EC(50) from 3.9 to 172 µM). Besides being agonists, they acted as selective allosteric enhancers of CCL3. These actions were dependent on a conserved glutamic acid at TM-7 (VII:06/7.39). A screening of 20 chelator analogues in complex with Zn(II) identified compounds with increased potencies, with 7 reaching highest potency at CCR1 (EC(50) of 0.85 µM), 20 at CCR8 (0.39 µM), and 8 at CCR5 (1.0 µM). Altered selectivity for CCR1 and CCR8 over CCR5 (11, 12) and a receptor-dependent separation of allosteric from intrinsic properties were achieved (20). The pocket similarities of CCR1 and CCR8, contrary to CCR5 as proposed by the ligand screen, were elaborated by computational modeling. These studies facilitate exploration of chemokine receptors as possible targets for therapeutic intervention.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Receptores CCR/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Células COS , Quelantes/química , Chlorocebus aethiops , Cobre/química , Ácido Glutâmico , Humanos , Ligantes , Modelos Moleculares , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Estrutura Terciária de Proteína , Piridinas/química , Receptores CCR/agonistas , Receptores CCR/química , Especificidade por Substrato , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA