Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(3): e22197, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35147989

RESUMO

Neonatal meningitis-associated Escherichia coli (NMEC) is among the leading causes of bacterial meningitis and sepsis in newborn infants. Several virulence factors have been identified as common among NMEC, and have been shown to play an important role in the development of bacteremia and/or meningitis. However, there is significant variability in virulence factor expression between NMEC isolates, and relatively little research has been done to assess the impact of variable virulence factor expression on immune cell activation and the outcome of infection. Here, we investigated the role of NMEC strain-dependent P2X receptor (P2XR) signaling on the outcome of infection in neonatal mice. We found that alpha-hemolysin (HlyA)-expressing NMEC (HlyA+ ) induced robust P2XR-dependent macrophage cell death in vitro, while HlyA- NMEC did not. P2XR-dependent cell death was inflammasome independent, suggesting an uncoupling of P2XR and inflammasome activation in the context of NMEC infection. In vivo inhibition of P2XRs was associated with increased mortality in neonatal mice infected with HlyA+ NMEC, but had no effect on the survival of neonatal mice infected with HlyA- NMEC. Furthermore, we found that P2XR-dependent protection against HlyA+ NMEC in vivo required macrophages, but not neutrophils or NLRP3. Taken together, these data suggest that HlyA+ NMEC activates P2XRs which in turn confers macrophage-dependent protection against infection in neonates. In addition, our findings indicate that strain-dependent virulence factor expression should be taken into account when studying the immune response to NMEC.


Assuntos
Proteínas de Escherichia coli/toxicidade , Proteínas Hemolisinas/toxicidade , Inflamassomos/metabolismo , Meningite devida a Escherichia coli/metabolismo , Sepse Neonatal/metabolismo , Receptores Purinérgicos P2X/metabolismo , Animais , Células Cultivadas , Escherichia coli K12 , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Macrófagos/metabolismo , Meningite devida a Escherichia coli/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Sepse Neonatal/microbiologia , Receptores Purinérgicos P2X/genética
2.
Cell Physiol Biochem ; 55(S3): 145-156, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34043301

RESUMO

The population of regulatory T cells (Tregs) is critical for immunological self-tolerance and homeostasis. Proper ion regulation contributes to Treg lineage identity, regulation, and effector function. Identified ion channels include Ca2+ release-activated Ca2+, transient receptor potential, P2X, volume-regulated anion and K+ channels Kv1.3 and KCa3.1. Ion channel modulation represents a promising therapeutic approach for the treatment of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. This review summarizes studies with gene-targeted mice and pharmacological modulators affecting Treg number and function. Furthermore, participation of ion channels is illustrated and the power of future research possibilities is discussed.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Cálcio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Esclerose Múltipla/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Cálcio/imunologia , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/imunologia , Sinalização do Cálcio , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Moduladores de Transporte de Membrana/química , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/imunologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/imunologia
3.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203249

RESUMO

By providing ~70% of the eye's refractive power, the preocular tear film is essential for optimal vision. However, its integrity is often jeopardized by environmental and pathologic conditions that accelerate evaporation and cause sight-impairing dry eye. A key adaptive response to evaporation-induced tear film hyperosmolarity is the reflex-triggered release of tear-stabilizing mucin from conjunctival goblet cells. Here, we review progress in elucidating the roles of ion channels in mediating this important exocytotic response. Much is now known about the modulatory impact of ATP-sensitive potassium channels, nonspecific cation channels and voltage-gated calcium channels. Recently, we discovered that during unremitting extracellular hyperosmolarity, P2X7 receptor/channels also become activated and markedly impair goblet cell viability. However, our understanding of possible adaptive benefits of this P2X7 activation remains limited. In the present study, we utilized high-temporal resolution membrane capacitance measurements to monitor the exocytotic activity of single goblet cells located in freshly excised rat conjunctiva. We now report that activation of P2X7 purinoceptors boosts neural-evoked exocytosis and accelerates replenishment of mucin-filled granules after exocytotic depletion. Thus, P2X7 activation exerts a yin-yang effect on conjunctival goblet cells: the high-gain benefit of enhancing the supply of tear-stabilizing mucin is implemented at the high-risk of endangering goblet cell survival.


Assuntos
Células Caliciformes/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X/metabolismo , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Exocitose/genética , Exocitose/fisiologia , Humanos , Receptores Purinérgicos P2X/genética
4.
Am J Pathol ; 189(2): 354-369, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448410

RESUMO

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.


Assuntos
Trifosfato de Adenosina/imunologia , Distrofia Muscular Animal , Miofibrilas , Sarcoglicanas/deficiência , Linfócitos T Reguladores , Trifosfato de Adenosina/genética , Animais , Cálcio/imunologia , Doença Crônica , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/patologia , Miofibrilas/imunologia , Miofibrilas/patologia , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/imunologia , Sarcoglicanas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
5.
Biochem Genet ; 58(5): 677-690, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32385670

RESUMO

This study aims to compare the expression of P2X receptor subtype mRNA in different arterial tissues of rats. After the rats were sacrificed, the internal carotid, pulmonary, thoracic aorta, mesenteric and caudal arteries were dissected out. Then, the P2X receptor mRNA expression in different blood vessels was detected by reverse transcription-polymerase chain reaction (RT-PCR) and real-time quantitative polymerase chain reaction. The P2X1, P2X4 and P2X7 receptor mRNA amplification products revealed specific bands of the same size as the amplified target fragment in their respective lanes, while the P2X2, P2X3, P2X5 and P2X6 receptor mRNA amplification products did not reveal significant specific bands in their respective lanes by RT-PCR. Based on the P2X1 receptor mRNA expression of the mesenteric artery, there were no significant differences in the internal carotid, pulmonary and thoracic aorta (0.64 ± 0.07, 0.17 ± 0.11 and 1.49 ± 0.65, respectively). However, the P2X1 receptor mRNA expression level in the caudal artery significantly increased (11.06 ± 1.99, P < 0.01). Furthermore, there was no difference in P2X4 receptor mRNA expression among these five blood vessels (P > 0.05). The P2X7 receptor mRNA expression level was significantly different: pulmonary artery < tail artery = thoracic aorta < internal carotid artery < mesenteric artery. The relative P2X1 receptor mRNA expression in the caudal artery was observed to be elevated when compared to that of the internal carotid, pulmonary and thoracic aorta as well as the mesenteric arteries. The P2X7 receptor mRNA expression level is pulmonary artery < caudal artery = thoracic aorta < internal carotid artery < mesenteric artery. P2X4 receptor mRNA expression was not significantly different among these five blood vessels.


Assuntos
Artérias/metabolismo , RNA Mensageiro/análise , Receptores Purinérgicos P2X/genética , Animais , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos P2X/metabolismo
6.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003406

RESUMO

Purinergic P2X receptors (P2X) are ATP-gated ion channels widely expressed in the CNS. While the direct contribution of P2X to synaptic transmission is uncertain, P2X reportedly affect N-methyl-D-aspartate receptor (NMDAR) activity, which has given rise to competing theories on the role of P2X in the modulation of synapses. However, P2X have also been shown to participate in receptor cross-talk: an interaction where one receptor (e.g., P2X2) directly influences the activity of another (e.g., nicotinic, 5-HT3 or GABA receptors). In this study, we tested for interactions between P2X2 or P2X4 and NMDARs. Using two-electrode voltage-clamp electrophysiology experiments in Xenopus laevis oocytes, we demonstrate that both P2X2 and P2X4 interact with NMDARs in an inhibited manner. When investigating the molecular domains responsible for this phenomenon, we found that the P2X2 c-terminus (CT) could interfere with both P2X2 and P2X4 interactions with NMDARs. We also report that 11 distal CT residues on the P2X4 facilitate the P2X4-NMDAR interaction, and that a peptide consisting of these P2X4 CT residues (11C) can disrupt the interaction between NMDARs and P2X2 or P2X4. Collectively, these results provide new evidence for the modulatory nature of P2X2 and P2X4, suggesting they might play a more nuanced role in the CNS.


Assuntos
Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2X/genética , Sinapses/genética , Trifosfato de Adenosina/metabolismo , Animais , Neurônios/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptor Cross-Talk/fisiologia , Receptores de GABA/genética , Receptores Purinérgicos P2X4/genética , Transmissão Sináptica/genética , Xenopus laevis/genética , Xenopus laevis/fisiologia
7.
Biochim Biophys Acta Biomembr ; 1860(1): 166-173, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28389204

RESUMO

Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X/metabolismo , Trifosfato de Adenosina/genética , Animais , Conexinas/genética , Humanos , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2X/genética
8.
FASEB J ; 31(7): 3040-3053, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28363952

RESUMO

Epicardium-derived cells (EPDCs) play a fundamental role in embryonic cardiac development and are reactivated in the adult heart in response to myocardial infarction (MI). In this study, EPDCs from post-MI rat hearts highly expressed the ectoenzyme CD73 and secreted the profibrotic matricellular protein tenascin-C (TNC). CD73 on EPDCs extensively generated adenosine from both extracellular ATP and NAD. This in turn stimulated the release of additional nucleotides from a Brefeldin A-sensitive intracellular pool via adenosine-A2BR signaling, forming a positive-feedback loop. A2BR activation, in addition, strongly promoted the release of major regulatory cytokines, such as IL-6, IL-11, and VEGF. TNC was found to stimulate EPDC migration and, together with ATP-P2X7R signaling, to activate inflammasomes in EPDCs via TLR4. Our results demonstrate that EPDCs are an important source of various proinflammatory factors in the post-MI heart controlled by purinergic and TNC signaling.-Hesse, J., Leberling, S., Boden, E., Friebe, D., Schmidt, T., Ding, Z., Dieterich, P., Deussen, A., Roderigo, C., Rose, C. R., Floss, D. M., Scheller, J., Schrader, J. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Citocinas/metabolismo , Pericárdio/citologia , Tenascina/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo
9.
FASEB J ; 31(6): 2649-2660, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28280004

RESUMO

Morphine is one of the most widely used drugs for the treatment of pain. However, side effects, including persistent constipation and antinociceptive tolerance, limit its clinical efficacy. Prolonged morphine treatment results in a "leaky" gut, predisposing to colonic inflammation that is facilitated by microbial dysbiosis and associated bacterial translocation. In this study, we examined the role of enteric glia in mediating this secondary inflammatory response to prolonged treatment with morphine. We found that purinergic P2X receptor activity was significantly enhanced in enteric glia that were isolated from mice with long-term morphine treatment (in vivo) but not upon direct exposure of glia to morphine (in vitro). LPS, a major bacterial product, also increased ATP-induced currents, as well as expression of P2X4, P2X7, IL6, IL-1ß mRNA in enteric glia. LPS increased connexin43 (Cx43) expression and enhanced ATP release from enteric glia cells. LPS-induced P2X currents and proinflammatory cytokine mRNA expression were blocked by the Cx43 blockers Gap26 and carbenoxolone. Likewise, colonic inflammation related to prolonged exposure to morphine was significantly attenuated by carbenoxolone (25 mg/kg). Carbenoxolone also prevented gut wall disruption and significantly reduced morphine-induced constipation. These findings imply that enteric glia activation is a significant modulator of morphine-related inflammation and constipation.-Bhave, S., Gade, A., Kang, M., Hauser, K. F., Dewey, W. L., Akbarali, H. I. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation.


Assuntos
Conexina 43/metabolismo , Constipação Intestinal/induzido quimicamente , Morfina/farmacologia , Neuroglia/fisiologia , Receptores Purinérgicos P2X/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina , Analgésicos Opioides/farmacologia , Animais , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Lipopolissacarídeos/toxicidade , Masculino , Potenciais da Membrana , Camundongos , RNA Mensageiro , Receptores Purinérgicos P2X/genética
10.
Adv Exp Med Biol ; 1051: 55-69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28639248

RESUMO

Extracellular ATP-gated P2X receptors are trimeric non-selective cation channels important for many physiological events including immune response and neural transmission. These receptors belong to a unique class of ligand-gated ion channels composed of only six transmembrane helices and a relatively small extracellular domain that harbors three ATP-binding pockets. The crystal structures of P2X receptors, including the recent P2X3 structures representing three different stages of the gating cycle, have provided a compelling structural foundation for understanding how this class of ligand-gated ion channels function. These structures, in combination with numerous functional studies ranging from classic mutagenesis and electrophysiology to modern optogenetic pharmacology, have uncovered unique molecular mechanisms of P2X receptor function. This review article summarizes the current knowledge in P2X receptor activation, especially focusing on the mechanisms underlying ATP-binding, conformational changes in the extracellular domain, and channel gating and desensitization.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Purinérgicos P2X , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Humanos , Domínios Proteicos , Relação Quantitativa Estrutura-Atividade , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo
11.
J Cell Physiol ; 231(8): 1656-70, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26627116

RESUMO

The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Trifosfato de Adenosina/metabolismo , Vias Auditivas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Audição , Ativação do Canal Iônico , Receptores Purinérgicos P2X/metabolismo , Transdução de Sinais , Animais , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/fisiopatologia , Predisposição Genética para Doença , Audição/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/terapia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Conformação Proteica , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/efeitos dos fármacos , Receptores Purinérgicos P2X/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Glia ; 64(12): 2231-2246, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27641912

RESUMO

Under stressful conditions nucleotides are released from dying cells into the extracellular space, where they can bind to purinergic P2X and P2Y receptors. High concentrations of extracellular ATP in particular induce P2X7-mediated signaling, which leads to inflammasome activation. This in turn leads to the processing and secretion of pro-inflammatory cytokines, like interleukin (IL)-1ß. During neurodegenerative diseases, innate immune responses are shaped by microglia and we have previously identified microglia-specific features of inflammasome-mediated responses. Here, we compared ATP-induced IL-1ß secretion in primary rhesus macaque microglia and bone marrow-derived macrophages (BMDM). We assessed the full expression profile of P2 receptors and characterized the induction and modulation of IL-1ß secretion by extracellular nucleotides. Microglia secreted significantly lower levels of IL-1ß in response to ATP when compared to BMDM. We demonstrate that this is not due to differences in sensitivity, kinetics or expression of ATP-processing enzymes, but rather to differences in purinergic receptor expression levels and usage. Using a combined approach of purinergic receptor agonists and antagonists, we demonstrate that ATP-induced IL-1ß secretion in BMDM was fully dependent on P2X7 signaling, whereas in microglia multiple purinergic receptors were involved, including P2X7 and P2X4. These cell type-specific features of conserved innate immune responses may reflect adaptations to the vulnerable CNS microenvironment. GLIA 2016;64:2231-2246.


Assuntos
Trifosfato de Adenosina/farmacologia , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Interleucina-6/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macaca mulatta , Masculino , Polissacarídeos/farmacologia , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo
13.
Neurochem Res ; 41(1-2): 364-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26801171

RESUMO

Hearing and its protection is regulated by ATP-evoked Ca(2+) signaling in the supporting cells of the organ of Corti, however, the unique anatomy of the cochlea hampers observing these mechanisms. For the first time, we have performed functional ratiometric Ca(2+) imaging (fura-2) in three different supporting cell types in the hemicochlea preparation of hearing mice to measure purinergic receptor-mediated Ca(2+) signaling in pillar, Deiters' and Hensen's cells. Their resting [Ca(2+)]i was determined and compared in the same type of preparation. ATP evoked reversible, repeatable and dose-dependent Ca(2+) transients in all three cell types, showing desensitization. Inhibiting the Ca(2+) signaling of the ionotropic P2X (omission of extracellular Ca(2+)) and metabotropic P2Y purinergic receptors (depletion of intracellular Ca(2+) stores) revealed the involvement of both receptor types. Detection of P2X2,3,4,6,7 and P2Y1,2,6,12,14 receptor mRNAs by RT-PCR supported this finding and antagonism by PPADS suggested different functional purinergic receptor population in pillar versus Deiters' and Hensen's cells. The sum of the extra- and intracellular Ca(2+)-dependent components of the response was about equal with the control ATP response (linear additivity) in pillar cells, and showed supralinearity in Deiters' and Hensen's cells. Calcium-induced calcium release might explain this synergistic interaction. The more pronounced Ca(2+) leak from the endoplasmic reticulum in Deiters' and Hensen's cells, unmasked by cyclopiazonic acid, may also suggests the higher activity of the internal stores in Ca(2+) signaling in these cells. Differences in Ca(2+) homeostasis and ATP-induced Ca(2+) signaling might reflect the distinct roles these cells play in cochlear function and pathophysiology.


Assuntos
Trifosfato de Adenosina/fisiologia , Sinalização do Cálcio/fisiologia , Cóclea/fisiologia , Animais , Cóclea/citologia , Potenciais Evocados Auditivos , Camundongos , RNA Mensageiro/genética , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2Y/genética
14.
Purinergic Signal ; 12(2): 269-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26874702

RESUMO

P2X receptors are ligand-gated ion channels that can bind with the adenosine triphosphate (ATP) and have diverse functional roles in neuropathic pain, inflammation, special sense, and so on. In this study, 180 putative P2X genes, including 176 members in 32 animal species and 4 members in 3 species of lower plants, were identified. These genes were divided into 13 groups, including 7 groups in vertebrates and 6 groups in invertebrates and lower plants, through phylogenetic analysis. Their gene organization and motif composition are conserved in most predicted P2X members, while group-specific features were also found. Moreover, synteny relationships of the putative P2X genes in vertebrates are conserved while simultaneously experiencing a series of gene insertion, inversion, and transposition. Recombination signals were detected in almost all of the vertebrates and invertebrates, suggesting that intragenic recombination may play a significant role in the evolution of P2X genes. Selection analysis also identified some positively selected sites that acted on the evolution of most of the predicted P2X proteins. The phenomenon of alternative splicing occurred commonly in the putative P2X genes of vertebrates. This article explored in depth the evolutional relationship among different subtypes of P2X genes in animal and plants and might serve as a solid foundation for deciphering their functions in further studies.


Assuntos
Receptores Purinérgicos P2X/genética , Animais , Filogenia , Proteínas de Plantas/genética
15.
Proc Natl Acad Sci U S A ; 110(36): E3455-63, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959888

RESUMO

The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.


Assuntos
Trifosfato de Adenosina/farmacologia , Magnésio/farmacologia , Receptores Purinérgicos P2X/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/citologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Magnésio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Conformação Proteica , Multimerização Proteica , Ratos , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X1/química , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
16.
J Neurosci ; 34(5): 1633-46, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478347

RESUMO

Primary sensory afferents of the dorsal root ganglion (DRG) that innervate the skin detect a wide range of stimuli, such as touch, temperature, pain, and itch. Different functional classes of nociceptors project their axons to distinct target zones within the developing skin, but the molecular mechanisms that regulate target innervation are less clear. Here we report that the Nogo66 receptor homolog NgR2 is essential for proper cutaneous innervation. NgR2(-/-) mice display increased density of nonpeptidergic nociceptors in the footpad and exhibit enhanced sensitivity to mechanical force and innocuous cold temperatures. These sensory deficits are not associated with any abnormality in morphology or density of DRG neurons. However, deletion of NgR2 renders nociceptive nonpeptidergic sensory neurons insensitive to the outgrowth repulsive activity of skin-derived Versican. Biochemical evidence shows that NgR2 specifically interacts with the G3 domain of Versican. The data suggest that Versican/NgR2 signaling at the dermo-epidermal junction acts in vivo as a local suppressor of axonal plasticity to control proper density of epidermal sensory fiber innervation. Our findings not only reveal the existence of a novel and unsuspected mechanism regulating epidermal target innervation, but also provide the first evidence for a physiological role of NgR2 in the peripheral nervous system.


Assuntos
Epiderme/inervação , Gânglios Espinais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores de Superfície Celular/metabolismo , Células Receptoras Sensoriais/metabolismo , Versicanas/metabolismo , Animais , Animais Recém-Nascidos , Células CHO , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cricetulus , Proteínas F-Box , Glicoproteínas/metabolismo , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas de Neurofilamentos/metabolismo , Nociceptores/metabolismo , Receptor Nogo 2 , Limiar da Dor/fisiologia , Estimulação Física/efeitos adversos , Ligação Proteica/genética , Receptores de Superfície Celular/genética , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/citologia , Canais de Cátion TRPV/metabolismo , Tubulina (Proteína)/metabolismo , Versicanas/química , Versicanas/genética
17.
Cell Physiol Biochem ; 37(5): 2043-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26584302

RESUMO

BACKGROUND/AIMS: Adenosine diphosphate ribose (ADPR), a product of ß-NAD+ metabolism generated by the multifunctional enzyme CD38, is recognized as a novel signaling molecule. The catalytic site of CD38 orients extracellularly or intracellularly, capable of generating ADPR outside and inside the cells. CD38-dependent pathways have been characterized in pulmonary artery smooth muscle cells (PASMCs); however the physiological function of extracellular ADPR is unclear. METHODS: Ca2+ mobilizing and proliferative effects of extracellular ADPR were characterized and compared with the ATP-induced responses in rat PASMCs; and the expression of purinergic receptor (P2X and P2Y) subtypes were examined in pulmonary arteries. RESULTS: ADPR elicited concentration-dependent increase in [Ca2+]i with a fast transient and a sustained phase in PASMCs. The sustained phase was abolished by Ca2+ removal and inhibited by the non-selective cation channel blocker SKF-96365, but was unaffected by TRPM2 antagonists or nifedipine. The purinergic receptor (P2X) antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonate inhibited partially the transient and the sustained Ca2+ response, while the P2(XY) inhibitor suramin and the phospholipase C inhibitor U73122 abolished the sustained Ca2+ influx. The P2Y1 antagonist MRS2179 had no effect on the response. By contrast, ATP and ADP activated Ca2+ response exhibited a high and a low affinity component, and the pharmacological profile of ATP-induced Ca2+ response was distinctive from that of ADPR. BrdU incorporation assay showed that ADPR caused significant inhibition whereas ATP caused slight stimulation of PASMC proliferation. RT-PCR analysis found that almost all P2X and P2Y subtypes are expressed in PAs. CONCLUSION: ADPR and ATP activate Ca2+ responses through different combinations of multiple purinergic receptor subtypes; and extracellular ADPR may exert an autocrine/paracrine action via purinergic receptors on PASMCs.


Assuntos
Adenosina Difosfato Ribose/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Estrenos/farmacologia , Imidazóis/farmacologia , Íons/química , Íons/metabolismo , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nifedipino/farmacologia , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suramina/farmacologia , Canais de Cátion TRPM/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
18.
Biochem Biophys Res Commun ; 458(3): 596-600, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25680470

RESUMO

To explore the association of the phenotype of ATP-activated current with the genotype of P2X1-6 subunits in nociceptors, we developed a method that allows us to label nociceptive neurons innervating tooth-pulp in rat trigeminal ganglion (TG) neurons using a retrograde fluorescence-tracing method, to record ATP-activated current in freshly isolated fluorescence-labeled neurons, and then to conduct single cell immunohistochemical staining for P2X1-6 subunits in the same neuron. We found that fast application of 100 µM ATP to fluorescence-traced TG neurons produced robust inward current in 87% (96/110) of cells tested. The diameter of cells varied from 16 to 56 µm. Three types of ATP-activated current (F, I and S) were recorded with distinct rise times of the current (R10-90, P < 0.05). There was a positive correlation between the cell diameter and the value of R10-90 (P < 0.05): the value of R10-90 increased with increases in the cell diameter. Cells responsive to ATP with the type F current mainly showed positive staining for P2X3 and P2X5, but negative staining for P2X2; cells responsive to ATP with the type I current showed positive staining for P2X1-3 and P2X5, but negative staining for P2X4; and cells responsive to ATP with the type S current showed positive staining for P2X1-5, but negative staining for P2X6. The present findings suggest that in addition to P2X3 subunits, P2X5 subunits are also involved in the generation of the F type of ATP-activated current in small-sized nociceptive neurons. In addition to the P2X2/3 subunit-containing channels, more complex uncharacterized combinations of P2X1-5 subunits exist in native medium-sized nociceptive neurons exhibiting the I and S types of ATP-activated current. In addition, the P2X6 subunit is not a main subunit involved in the nociceptive signal in rat TG neurons innervating tooth-pulp.


Assuntos
Trifosfato de Adenosina/metabolismo , Polpa Dentária/inervação , Neurônios/citologia , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Células Cultivadas , Genótipo , Imuno-Histoquímica , Neurônios/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X/genética , Gânglio Trigeminal/citologia
19.
J Virol ; 88(19): 11504-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031337

RESUMO

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) infection is chronic and presently still incurable. Antiretroviral drugs effectively suppress replication; however, persistent activation of inflammatory pathways remains a key cause of morbidity. Recent studies proposed that purinergic signaling is required for HIV-1 infection. Purinergic receptors are distributed throughout a wide variety of tissue types and detect extracellular ATP as a danger signal released from dying cells. We have explored how these pathways are involved in the transmission of HIV-1 from cell to cell through virological synapses. Infection of CD4+ T lymphocytes with HIV-1 in the presence of an inhibitor of P2X receptors effectively inhibited HIV-1 infection through both cell-free and cell-to-cell contact in a dose-dependent manner. Inhibition of direct cell-to-cell infection did not affect the formation of virological synapses or the subsequent cell-to-cell transfer of HIV-1. During both cell-free and cell-to-cell CD4+ T lymphocyte infection, purinergic antagonists blocked infection at the level of viral membrane fusion. During cell-to-cell transmission, we observed CXCR4 colocalization with the newly internalized virus particles within target lymphocytes and found that the purinergic antagonists did not impair the recruitment of the coreceptor CXCR4 to the site of Gag internalization in the target cell. In a screen of a library of purinergic antagonists, we found that the most potent inhibitors of HIV-1 fusion were those that target P2X receptors, while P2Y-selective receptor antagonists or adenosine receptor antagonists were ineffective. Our results suggest that P2X receptors may provide a therapeutic target and that purinergic antagonists may have potent activity against viral infection of CD4+ T lymphocytes by both cell-free and cell-to-cell transmission. IMPORTANCE: This study identifies purinergic antagonists to be potent inhibitors of HIV-1 cell-free and cell-to-cell-mediated infection and provides a stepwise determination of when these compounds inhibit HIV-1 infection. These data provide a rationale for the development of novel antiretroviral therapies that have a dual role in both direct antiviral activity and the reduction of HIV-associated inflammation. Purinergic antagonists are shown here to have equivalent efficacy in inhibiting HIV infection via cell-free and cell-to-cell infection, and it is shown that purinergic receptors could provide an attractive therapeutic anti-HIV target that might avoid resistance by targeting a host signaling pathway that potently regulates HIV infection. The high-throughput screen of HIV-1 fusion inhibitors further defines P2X-selective compounds among the purinergic compounds as being the most potent HIV entry inhibitors. Clinical studies on these drugs for other inflammatory indications suggest that they are safe, and thus, if developed for use as anti-HIV agents, they could reduce both HIV replication and HIV-related inflammation.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Antagonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2X/genética , Vírion/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Fusão Celular , Linhagem Celular , Células HEK293 , HIV-1/fisiologia , Humanos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Purinérgicos P2X/metabolismo , Relação Estrutura-Atividade , Vírion/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Purinergic Signal ; 11(4): 491-506, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26395809

RESUMO

Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists ß,γ-methylenadenosine 5'-triphosphate (ß,γ-MetATP) and 8-bromoadenosine 5'-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca(2+)](i)) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca(2+)](i) transients induced by ADP/ATP were abolished by the phospholipase C-ß (PLC-ß) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca(2+)](i) transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca(2+)](i) response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca(2+)](i) transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.


Assuntos
Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/antagonistas & inibidores , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Contração Miocárdica/efeitos dos fármacos , Gravidez , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2X/biossíntese , Receptores Purinérgicos P2X/efeitos dos fármacos , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Difosfato de Uridina/farmacologia , Uridina Trifosfato/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA