Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.909
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(24): 5394-5410.e18, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922901

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.


Assuntos
Terapia Genética , Doença de Parkinson , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Levodopa/uso terapêutico , Levodopa/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/terapia , Primatas , Receptores de Dopamina D1/metabolismo , Modelos Animais de Doenças
2.
Cell ; 184(4): 931-942.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571431

RESUMO

The D1- and D2-dopamine receptors (D1R and D2R), which signal through Gs and Gi, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-Gs and D2R-Gi signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.


Assuntos
Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Sequência de Aminoácidos , Sequência Conservada , Microscopia Crioeletrônica , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/ultraestrutura , Homologia Estrutural de Proteína
3.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571432

RESUMO

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Catecóis/metabolismo , Microscopia Crioeletrônica , Fenoldopam/química , Fenoldopam/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Multimerização Proteica , Receptores de Dopamina D1/química , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/metabolismo , Homologia Estrutural de Proteína
4.
Cell ; 178(1): 60-75.e19, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31230716

RESUMO

Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.


Assuntos
Aprendizagem por Associação/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Plasticidade Neuronal , Odorantes , Recompensa , Olfato/fisiologia , Potenciais Sinápticos/fisiologia , Fatores de Tempo
5.
Cell ; 174(1): 44-58.e17, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29779950

RESUMO

Many naturalistic behaviors are built from modular components that are expressed sequentially. Although striatal circuits have been implicated in action selection and implementation, the neural mechanisms that compose behavior in unrestrained animals are not well understood. Here, we record bulk and cellular neural activity in the direct and indirect pathways of dorsolateral striatum (DLS) as mice spontaneously express action sequences. These experiments reveal that DLS neurons systematically encode information about the identity and ordering of sub-second 3D behavioral motifs; this encoding is facilitated by fast-timescale decorrelations between the direct and indirect pathways. Furthermore, lesioning the DLS prevents appropriate sequence assembly during exploratory or odor-evoked behaviors. By characterizing naturalistic behavior at neural timescales, these experiments identify a code for elemental 3D pose dynamics built from complementary pathway dynamics, support a role for DLS in constructing meaningful behavioral sequences, and suggest models for how actions are sculpted over time.


Assuntos
Comportamento Animal , Corpo Estriado/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Corpo Estriado/efeitos dos fármacos , Eletrodos Implantados , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fotometria , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D1/genética
6.
Cell ; 163(5): 1176-1190, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590421

RESUMO

The ghrelin receptor (GHSR1a) and dopamine receptor-1 (DRD1) are coexpressed in hippocampal neurons, yet ghrelin is undetectable in the hippocampus; therefore, we sought a function for apo-GHSR1a. Real-time single-molecule analysis on hippocampal neurons revealed dimerization between apo-GHSR1a and DRD1 that is enhanced by DRD1 agonism. In addition, proximity measurements support formation of preassembled apo-GHSR1a:DRD1:Gαq heteromeric complexes in hippocampal neurons. Activation by a DRD1 agonist produced non-canonical signal transduction via Gαq-PLC-IP3-Ca(2+) at the expense of canonical DRD1 Gαs cAMP signaling to result in CaMKII activation, glutamate receptor exocytosis, synaptic reorganization, and expression of early markers of hippocampal synaptic plasticity. Remarkably, this pathway is blocked by genetic or pharmacological inactivation of GHSR1a. In mice, GHSR1a inactivation inhibits DRD1-mediated hippocampal behavior and memory. Our findings identify a previously unrecognized mechanism essential for DRD1 initiation of hippocampal synaptic plasticity that is dependent on GHSR1a, and independent of cAMP signaling.


Assuntos
Dopamina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Grelina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Hipocampo/metabolismo , Memória , Camundongos , Plasticidade Neuronal , Receptores de Dopamina D1/agonistas
7.
Cell ; 160(1-2): 62-73, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594175

RESUMO

Inflammasomes are involved in diverse inflammatory diseases, so the activation of inflammasomes needs to be tightly controlled to prevent excessive inflammation. However, the endogenous regulatory mechanisms of inflammasome activation are still unclear. Here, we report that the neurotransmitter dopamine (DA) inhibits NLRP3 inflammasome activation via dopamine D1 receptor (DRD1). DRD1 signaling negatively regulates NLRP3 inflammasome via a second messenger cyclic adenosine monophosphate (cAMP), which binds to NLRP3 and promotes its ubiquitination and degradation via the E3 ubiquitin ligase MARCH7. Importantly, in vivo data show that DA and DRD1 signaling prevent NLRP3 inflammasome-dependent inflammation, including neurotoxin-induced neuroinflammation, LPS-induced systemic inflammation, and monosodium urate crystal (MSU)-induced peritoneal inflammation. Taken together, our results reveal an endogenous mechanism of inflammasome regulation and suggest DRD1 as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Assuntos
Dopamina/metabolismo , Inflamassomos/imunologia , Neurotransmissores/metabolismo , Transdução de Sinais , Animais , Autofagia , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Agregados Proteicos , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1 , Ubiquitinação
8.
Cell ; 154(3): 637-50, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911326

RESUMO

Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/metabolismo , Dopamina/metabolismo , Peptidilprolil Isomerase/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião de Mamíferos/metabolismo , Proteínas de Arcabouço Homer , Potenciação de Longa Duração , Camundongos , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Fosforilação , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
9.
Nature ; 611(7937): 762-768, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352228

RESUMO

The canonical model of striatal function predicts that animal locomotion is associated with the opposing regulation of protein kinase A (PKA) in direct and indirect pathway striatal spiny projection neurons (SPNs) by dopamine1-7. However, the precise dynamics of PKA in dorsolateral SPNs during locomotion remain to be determined. It is also unclear whether other neuromodulators are involved. Here we show that PKA activity in both types of SPNs is essential for normal locomotion. Using two-photon fluorescence lifetime imaging8-10 of a PKA sensor10 through gradient index lenses, we measured PKA activity within individual SPNs of the mouse dorsolateral striatum during locomotion. Consistent with the canonical view, dopamine activated PKA activity in direct pathway SPNs during locomotion through the dopamine D1 receptor. However, indirect pathway SPNs exhibited a greater increase in PKA activity, which was largely abolished through the blockade of adenosine A2A receptors. In agreement with these results, fibre photometry measurements of an adenosine sensor11 revealed an acute increase in extracellular adenosine during locomotion. Functionally, antagonism of dopamine or adenosine receptors resulted in distinct changes in SPN PKA activity, neuronal activity and locomotion. Together, our results suggest that acute adenosine accumulation interplays with dopamine release to orchestrate PKA activity in SPNs and proper striatal function during animal locomotion.


Assuntos
Adenosina , Corpo Estriado , Proteínas Quinases Dependentes de AMP Cíclico , Dopamina , Locomoção , Neurônios , Animais , Camundongos , Adenosina/metabolismo , Corpo Estriado/citologia , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Locomoção/fisiologia , Neurônios/enzimologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptor A2A de Adenosina/metabolismo
10.
Nature ; 591(7850): 426-430, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33473212

RESUMO

Active forgetting is an essential component of the memory management system of the brain1. Forgetting can be permanent, in which prior memory is lost completely, or transient, in which memory exists in a temporary state of impaired retrieval. Temporary blocks on memory seem to be universal, and can disrupt an individual's plans, social interactions and ability to make rapid, flexible and appropriate choices. However, the neurobiological mechanisms that cause transient forgetting are unknown. Here we identify a single dopamine neuron in Drosophila that mediates the memory suppression that results in transient forgetting. Artificially activating this neuron did not abolish the expression of long-term memory. Instead, it briefly suppressed memory retrieval, with the memory becoming accessible again over time. The dopamine neuron modulates memory retrieval by stimulating a unique dopamine receptor that is expressed in a restricted physical compartment of the axons of mushroom body neurons. This mechanism for transient forgetting is triggered by the presentation of interfering stimuli immediately before retrieval.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster/fisiologia , Rememoração Mental/fisiologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Condicionamento Psicológico , Dendritos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Estimulação Elétrica , Feminino , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Odorantes , Receptores de Dopamina D1/metabolismo , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 121(21): e2319595121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739786

RESUMO

As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.


Assuntos
Ansiedade , Depressão , Material Particulado , Receptores de Dopamina D1 , Animais , Material Particulado/toxicidade , Camundongos , Masculino , Ansiedade/metabolismo , Depressão/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Poluentes Atmosféricos/toxicidade , Comportamento Animal/efeitos dos fármacos , Simulação de Acoplamento Molecular
12.
Proc Natl Acad Sci U S A ; 121(18): e2307090121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648487

RESUMO

G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.


Assuntos
Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Camundongos , Células HEK293 , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Isoproterenol/farmacologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Morfina/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Técnicas Biossensoriais/métodos
13.
EMBO J ; 41(15): e110721, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35730718

RESUMO

ΔfosB is an alternatively spliced product of the FosB gene that is essential for dopamine-induced reward pathways and that acts as a master switch for addiction. However, the molecular mechanisms of its generation and regulation by dopamine signaling are unknown. Here, we report that dopamine D1 receptor signaling synergizes with the activin/ALK4/Smad3 pathway to potentiate the generation of ΔFosB mRNA in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) via activation of the RNA-binding protein PCBP1, a regulator of mRNA splicing. Concurrent activation of PCBP1 and Smad3 by D1 and ALK4 signaling induced their interaction, nuclear translocation, and binding to sequences in exon-4 and intron-4 of FosB mRNA. Ablation of either ALK4 or PCBP1 in MSNs impaired ΔFosB mRNA induction and nuclear translocation of ΔFosB protein in response to repeated co-stimulation of D1 and ALK4 receptors. Finally, ALK4 is required in NAc MSNs of adult mice for behavioral sensitization to cocaine. These findings uncover an unexpected mechanism for ΔFosB generation and drug-induced sensitization through convergent dopamine and ALK4 signaling.


Assuntos
Cocaína , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Processamento Alternativo , Animais , Cocaína/metabolismo , Cocaína/farmacologia , Dopamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo
14.
Nature ; 579(7800): 555-560, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214250

RESUMO

Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia1,2. High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning3-5. However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A2A receptor (A2AR)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A2ARs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.


Assuntos
Espinhas Dendríticas/fisiologia , Aprendizagem por Discriminação/fisiologia , Receptores de Dopamina D2/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Metanfetamina/antagonistas & inibidores , Metanfetamina/farmacologia , Camundongos , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Optogenética , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/metabolismo , Recompensa , Transdução de Sinais/efeitos dos fármacos , Sinapses/metabolismo
15.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38955487

RESUMO

Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.


Assuntos
Astrócitos , Potenciação de Longa Duração , Receptores de Dopamina D1 , Receptores de Dopamina D5 , Sinapses , Animais , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Potenciação de Longa Duração/fisiologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Camundongos , Masculino , Receptores de Dopamina D5/metabolismo , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/genética , Feminino , Sinapses/fisiologia , Sinapses/metabolismo , Gânglios Espinais/citologia , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/citologia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
16.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485256

RESUMO

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Assuntos
Prosencéfalo Basal , Cocaína , Vias Neurais , Recompensa , Animais , Camundongos , Prosencéfalo Basal/fisiologia , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/citologia
17.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664012

RESUMO

l-DOPA-induced dyskinesia (LID) is a debilitating motor side effect arising from chronic dopamine (DA) replacement therapy with l-DOPA for the treatment of Parkinson's disease. LID is associated with supersensitivity of striatal dopaminergic signaling and fluctuations in synaptic DA following each l-DOPA dose, shrinking the therapeutic window. The heterogeneous composition of the striatum, including subpopulations of medium spiny output neurons (MSNs), interneurons, and supporting cells, complicates the identification of cell(s) underlying LID. We used single-nucleus RNA sequencing (snRNA-seq) to establish a comprehensive striatal transcriptional profile during LID development. Male hemiparkinsonian mice were treated with vehicle or l-DOPA for 1, 5, or 10 d, and striatal nuclei were processed for snRNA-seq. Analyses indicated a limited population of DA D1 receptor-expressing MSNs (D1-MSNs) formed three subclusters in response to l-DOPA treatment and expressed cellular markers of activation. These activated D1-MSNs display similar transcriptional changes previously associated with LID; however, their prevalence and transcriptional behavior were differentially influenced by l-DOPA experience. Differentially expressed genes indicated acute upregulation of plasticity-related transcription factors and mitogen-activated protein kinase signaling, while repeated l-DOPA-induced synaptic remodeling, learning and memory, and transforming growth factor-ß (TGF-ß) signaling genes. Notably, repeated l-DOPA sensitized Inhba, an activin subunit of the TGF-ß superfamily, in activated D1-MSNs, and its pharmacological inhibition impaired LID development, suggesting that activin signaling may play an essential role in LID. These data suggest distinct subsets of D1-MSNs become differentially l-DOPA-responsive due to aberrant induction of molecular mechanisms necessary for neuronal entrainment, similar to processes underlying hippocampal learning and memory.


Assuntos
Corpo Estriado , Discinesia Induzida por Medicamentos , Levodopa , Camundongos Endogâmicos C57BL , Animais , Levodopa/efeitos adversos , Levodopa/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Masculino , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
18.
Mol Psychiatry ; 29(3): 793-808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145987

RESUMO

Context-induced retrieval of drug withdrawal memory is one of the important reasons for drug relapses. Previous studies have shown that different projection neurons in different brain regions or in the same brain region such as the basolateral amygdala (BLA) participate in context-induced retrieval of drug withdrawal memory. However, whether these different projection neurons participate in the retrieval of drug withdrawal memory with same or different molecular pathways remains a topic for research. The present results showed that (1) BLA neurons projecting to the prelimbic cortex (BLA-PrL) and BLA neurons projecting to the nucleus accumbens (BLA-NAc) participated in context-induced retrieval of morphine withdrawal memory; (2) there was an increase in the expression of Arc and pERK in BLA-NAc neurons, but not in BLA-PrL neurons during context-induced retrieval of morphine withdrawal memory; (3) pERK was the upstream molecule of Arc, whereas D1 receptor was the upstream molecule of pERK in BLA-NAc neurons during context-induced retrieval of morphine withdrawal memory; (4) D1 receptors also strengthened AMPA receptors, but not NMDA receptors, -mediated glutamatergic input to BLA-NAc neurons via pERK during context-induced retrieval of morphine withdrawal memory. These results suggest that different projection neurons of the BLA participate in the retrieval of morphine withdrawal memory with diverse molecular pathways.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Morfina , Neurônios , Núcleo Accumbens , Síndrome de Abstinência a Substâncias , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Masculino , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Morfina/farmacologia , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Memória/fisiologia , Receptores de AMPA/metabolismo , Ratos , Dependência de Morfina/metabolismo , Tonsila do Cerebelo/metabolismo , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vias Neurais/metabolismo , Córtex Pré-Frontal/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921100

RESUMO

Impulsive overeating is a common, disabling feature of eating disorders. Both continuous deep brain stimulation (DBS) and responsive DBS, which limits current delivery to pathological brain states, have emerged as potential therapies. We used in vivo fiber photometry in wild-type, Drd1-cre, and A2a-cre mice to 1) assay subtype-specific medium spiny neuron (MSN) activity of the nucleus accumbens (NAc) during hedonic feeding of high-fat food, and 2) examine DBS strategy-specific effects on NAc activity. D1, but not D2, NAc GCaMP activity increased immediately prior to high-fat food approach. Responsive DBS triggered a GCaMP surge throughout the stimulation period and durably reduced high-fat intake. However, with continuous DBS, this surge decayed, and high-fat intake reemerged. Our results argue for a stimulation strategy-dependent modulation of D1 MSNs with a more sustained decrease in consumption with responsive DBS. This study illustrates the important role in vivo imaging can play in understanding effects of such novel therapies.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Comportamento Alimentar/fisiologia , Animais , Comportamento Impulsivo , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(33): e2117903119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939697

RESUMO

Dopamine D1 receptors (D1Rs) in the hippocampal dentate gyrus (DG) are essential for antidepressant effects. However, the midbrain dopaminergic neurons, the major source of dopamine in the brain, only sparsely project to DG, suggesting possible activation of DG D1Rs by endogenous substances other than dopamine. We have examined this possibility using electrophysiological and biochemical techniques and found robust activation of D1Rs in mouse DG neurons by noradrenaline. Noradrenaline at the micromolar range potentiated synaptic transmission at the DG output and increased the phosphorylation of protein kinase A substrates in DG via activation of D1Rs and ß adrenergic receptors. Neuronal excitation preferentially enhanced noradrenaline-induced synaptic potentiation mediated by D1Rs with minor effects on ß-receptor-dependent potentiation. Increased voluntary exercise by wheel running also enhanced noradrenaline-induced, D1R-mediated synaptic potentiation, suggesting a distinct functional role of the noradrenaline-D1R signaling. We then examined the role of this signaling in antidepressant effects using mice exposed to chronic restraint stress. In the stressed mice, an antidepressant acting on the noradrenergic system induced a mature-to-immature change in the DG neuron phenotype, a previously proposed cellular substrate for antidepressant action. This effect was evident only in mice subjected to wheel running and blocked by a D1R antagonist. These results suggest a critical role of noradrenaline-induced activation of D1Rs in antidepressant effects in DG. Experience-dependent regulation of noradrenaline-D1R signaling may determine responsiveness to antidepressant drugs in depressive disorders.


Assuntos
Giro Denteado , Transtorno Depressivo , Dopamina , Neurônios Dopaminérgicos , Norepinefrina , Receptores de Dopamina D1 , Animais , Antidepressivos/farmacologia , Giro Denteado/metabolismo , Transtorno Depressivo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Receptores de Dopamina D1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA