Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.071
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 30: 439-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288116

RESUMO

Astrocytes regulate multiple aspects of neuronal and synaptic function from development through to adulthood. Instead of addressing each function independently, this review provides a comprehensive overview of the different ways astrocytes modulate neuronal synaptic function throughout life, with a particular focus on recent findings in each area. It includes the emerging functions of astrocytes, such as a role in synapse formation, as well as more established roles, including the uptake and recycling of neurotransmitters. This broad approach covers the many ways astrocytes and neurons constantly interact to maintain the correct functioning of the brain. It is important to consider all of these diverse functions of astrocytes when investigating how astrocyte-neuron interactions regulate synaptic behavior to appreciate the complexity of these ongoing interactions.


Assuntos
Astrócitos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Sinalização do Cálcio , Comunicação Celular , Ácido Glutâmico/fisiologia , Humanos , Transporte de Íons , Lipídeos/biossíntese , Neurônios/fisiologia , Neurotransmissores/fisiologia , Proteínas de Transporte de Neurotransmissores/fisiologia , Potássio/metabolismo , Receptores de Neurotransmissores/fisiologia
2.
Annu Rev Neurosci ; 40: 1-19, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28301776

RESUMO

Neurotransmitter switching is the gain of one neurotransmitter and the loss of another in the same neuron in response to chronic stimulation. Neurotransmitter receptors on postsynaptic cells change to match the identity of the newly expressed neurotransmitter. Neurotransmitter switching often appears to change the sign of the synapse from excitatory to inhibitory or from inhibitory to excitatory. In these cases, neurotransmitter switching and receptor matching thus change the polarity of the circuit in which they take place. Neurotransmitter switching produces up or down reversals of behavior. It is also observed in response to disease. These findings raise the possibility that neurotransmitter switching contributes to depression, schizophrenia, and other illnesses. Many early discoveries of the single gain or loss of a neurotransmitter may have been harbingers of neurotransmitter switching.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Receptores de Neurotransmissores/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Humanos
4.
Annu Rev Neurosci ; 37: 387-407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002280

RESUMO

Elucidating the roles of neuronal cell types for physiology and behavior is essential for understanding brain functions. Perturbation of neuron electrical activity can be used to probe the causal relationship between neuronal cell types and behavior. New genetically encoded neuron perturbation tools have been developed for remotely controlling neuron function using small molecules that activate engineered receptors that can be targeted to cell types using genetic methods. Here we describe recent progress for approaches using genetically engineered receptors that selectively interact with small molecules. Called "chemogenetics," receptors with diverse cellular functions have been developed that facilitate the selective pharmacological control over a diverse range of cell-signaling processes, including electrical activity, for molecularly defined cell types. These tools have revealed remarkably specific behavioral physiological influences for molecularly defined cell types that are often intermingled with populations having different or even opposite functions.


Assuntos
Encéfalo/fisiologia , Engenharia Genética/métodos , Técnicas de Sonda Molecular , Receptores de Neurotransmissores/fisiologia , Animais , Humanos , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/fisiologia , Ligantes , Sondas Moleculares/genética , Sondas Moleculares/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neurotransmissores/agonistas , Receptores de Neurotransmissores/antagonistas & inibidores
5.
Neuroimage ; 231: 117843, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577936

RESUMO

The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.


Assuntos
Rede Nervosa/citologia , Rede Nervosa/fisiologia , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Receptores de Neurotransmissores/fisiologia , Animais , Autorradiografia/métodos , Macaca fascicularis , Macaca mulatta , Masculino , Análise Multivariada , Rede Nervosa/química , Lobo Parietal/química , Receptores de Neurotransmissores/análise
6.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427575

RESUMO

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Receptores de Neurotransmissores/fisiologia , Mecânica Respiratória/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Humanos , Bulbo/citologia , Receptores Purinérgicos/fisiologia , Respiração , Neurônios Serotoninérgicos/fisiologia
7.
Biochem Biophys Res Commun ; 534: 653-658, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33228964

RESUMO

Two novel peptides, neuromedin U precursor-related peptide (NURP) and neuromedin S precursor-related peptide (NSRP), are produced from neuromedin U (NMU) and neuromedin S (NMS) precursors, respectively, as these precursors have multiple consensus sequences for proteolytic processing. Our group has shown previously that one of these two novel peptides, NURP, stimulates body temperature and locomotor activity, but not food intake. However, the physiological function of the other peptide, NSRP, has remained unclear. Therefore, the aim of this study was to characterize differences in the regions of the rat brain targeted by the NMU/NMS peptide family, including NURP and NSRP, and their physiological functions. First, we explored the regions of c-Fos expression after intracerebroventricular (i.c.v.) injection of NURP and NSRP and found that these were fewer than after i.c.v. injection of NMU and NMS in the hypothalamus, possibly because NURP and NSRP cannot activate NMU/NMS receptors. In the ventral subiculum, which is one region of the hippocampus, c-Fos expression was evident only after i.c.v. injection of NURP. We also examined the effects of NSRP on food intake, body temperature and locomotor activity. Like NURP, NSRP increased both body temperature and locomotor activity, but not food intake, indicating that NSRP is also a functional peptide. However, these effects of NSRP were distinctly weaker than those of NURP. These findings suggest differences in the affinity of NURP and/or NSRP for specific receptors, or in their respective biological activities.


Assuntos
Sistema Nervoso Central/fisiologia , Neuropeptídeos/fisiologia , Precursores de Proteínas/fisiologia , Sequência de Aminoácidos , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Injeções Intraventriculares , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neuropeptídeos/administração & dosagem , Neuropeptídeos/genética , Precursores de Proteínas/administração & dosagem , Precursores de Proteínas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores de Neurotransmissores/fisiologia , Homologia de Sequência de Aminoácidos
8.
Reprod Biol Endocrinol ; 19(1): 25, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602248

RESUMO

BACKGROUND: Accumulating data indicate that sensory nerve derived neuropeptides such as substance P and calcitonin gene related-protein (CGRP) can accelerate the progression of endometriosis via their respective receptors, so can agonists to their respective receptors receptor 1 (NK1R), receptor activity modifying protein 1 (RAMP-1) and calcitonin receptor-like receptor (CRLR). Adrenergic ß2 receptor (ADRB2) agonists also can facilitate lesional progression. In contrast, women with endometriosis appear to have depressed vagal activity, concordant with reduced expression of α7 nicotinic acetylcholine receptor (α7nAChR). The roles of these receptors in adenomyosis are completely unknown. METHODS: Adenomyotic tissue samples from 30 women with adenomyosis and control endometrial tissue samples from 24 women without adenomyosis were collected and subjected to immunohistochemistry analysis of RAMP1, CRLR, NK1R, ADRB2 and α7nAChR, along with their demographic and clinical information. The extent of tissue fibrosis was evaluated by Masson trichrome staining. RESULTS: We found that the staining levels of NK1R, CRLR, RAMP1 and ADRB2 were all significantly elevated in adenomyotic lesions as compared with control endometrium. In contrast, α7nAChR staining levels were significantly reduced. The severity of dysmenorrhea correlated positively with lesional ADRB2 staining levels. CONCLUSIONS: Our results suggest that SP, CGRP and noradrenaline may promote, while acetylcholine may stall, the progression of adenomyosis through their respective receptors on adenomyotic lesions. Additionally, through the activation of the hypothalamic-pituitary-adrenal (HPA)-sympatho-adrenal-medullary (SAM) axes and the lesional overexpression of ADRB2, adenomyosis-associated dysmenorrhea and adenomyotic lesions may be mutually promotional, forming a viscous feed-forward cycle.


Assuntos
Adenomiose/etiologia , Neuropeptídeos/fisiologia , Receptores de Neurotransmissores/fisiologia , Adenomiose/metabolismo , Adenomiose/patologia , Adulto , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Estudos de Casos e Controles , China , Endométrio/metabolismo , Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
9.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360837

RESUMO

Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.


Assuntos
Neurotransmissores/metabolismo , Transtornos da Pigmentação/metabolismo , Receptores de Neurotransmissores/metabolismo , Pigmentação da Pele , Animais , Humanos , Melaninas/metabolismo , Melanócitos/metabolismo , Melanócitos/fisiologia , Melanose , Neurotransmissores/fisiologia , Transtornos da Pigmentação/fisiopatologia , Receptores de Neurotransmissores/fisiologia , Vitiligo
10.
Vis Neurosci ; 37: E005, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778188

RESUMO

Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus and an increasingly common cause of visual impairment. Blood vessel damage occurs as the disease progresses, leading to ischemia, neovascularization, blood-retina barrier (BRB) failure and eventual blindness. Although detection and treatment strategies have improved considerably over the past years, there is room for a better understanding of the pathophysiology of the diabetic retina. Indeed, it has been increasingly realized that DR is in fact a disease of the retina's neurovascular unit (NVU), the multi-cellular framework underlying functional hyperemia, coupling neuronal computations to blood flow. The accumulating evidence reveals that both neurochemical (synapses) and electrical (gap junctions) means of communications between retinal cells are affected at the onset of hyperglycemia, warranting a global assessment of cellular interactions and their role in DR. This is further supported by the recent data showing down-regulation of connexin 43 gap junctions along the vascular relay from capillary to feeding arteriole as one of the earliest indicators of experimental DR, with rippling consequences to the anatomical and physiological integrity of the retina. Here, recent advancements in our knowledge of mechanisms controlling the retinal neurovascular unit will be assessed, along with their implications for future treatment and diagnosis of DR.


Assuntos
Retinopatia Diabética/fisiopatologia , Pericitos/fisiologia , Neurônios Retinianos/fisiologia , Animais , Barreira Hematorretiniana , Retinopatia Diabética/metabolismo , Humanos , Receptores Colinérgicos/fisiologia , Receptores Dopaminérgicos/fisiologia , Receptores de Neurotransmissores/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Vasos Retinianos/fisiopatologia
11.
Arterioscler Thromb Vasc Biol ; 39(4): 704-718, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816802

RESUMO

Objective- Pulmonary arterial hypertension is characterized by progressive pulmonary vascular remodeling and persistently elevated mean pulmonary artery pressures and pulmonary vascular resistance. We aimed to investigate whether transthoracic pulmonary artery denervation (TPADN) attenuated pulmonary artery (PA) remodeling, improved right ventricular (RV) function, and affected underlying mechanisms. We also explored the distributions of sympathetic nerves (SNs) around human PAs for clinical translation. Approach and Results- We identified numerous SNs in adipose and connective tissues around the main PA trunks and bifurcations in male Sprague Dawley rats, which were verified in samples from human heart transplant patients. Pulmonary arterial hypertensive rats were randomized into TPADN and sham groups. In the TPADN group, SNs around the PA trunk and bifurcation were completely and accurately removed under direct visualization. The sham group underwent thoracotomy. Hemodynamics, RV function, and pathological changes in PA and RV tissues were measured via right heart catheterization, cardiac magnetic resonance imaging, and pathological staining, respectively. Compared with the sham group, the TPADN group had lower mean pulmonary arterial pressures, less PA and RV remodeling, and improved RV function. Furthermore, TPADN inhibited neurohormonal overactivation of the sympathetic nervous system and renin-angiotensin-aldosterone system and regulated abnormal expressions and signaling of neurohormone receptors in local tissues. Conclusions- There are numerous SNs around the rat and human main PA trunks and bifurcations. TPADN completely and accurately removed the main SNs around PAs and attenuated pulmonary arterial hypertensive progression by inhibiting excessive activation of the sympathetic nervous system and renin-angiotensin-aldosterone system neurohormone-receptor axes.


Assuntos
Hipertensão Arterial Pulmonar/cirurgia , Simpatectomia/métodos , Adolescente , Aldosterona/fisiologia , Animais , Pré-Escolar , Citocinas/sangue , Progressão da Doença , Feminino , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertrofia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Monocrotalina/toxicidade , Neurotransmissores/fisiologia , Estresse Oxidativo , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/inervação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Neurotransmissores/biossíntese , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/fisiologia , Sistema Renina-Angiotensina/fisiologia , Sistema Nervoso Simpático/anatomia & histologia
12.
J Exp Biol ; 222(Pt 11)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31085603

RESUMO

South American weakly electric fish (order Gymnotiformes) rely on a highly conserved and relatively fixed electromotor circuit to produce species-specific electric organ discharges (EODs) and a variety of meaningful adaptive EOD modulations. The command for each EOD arises from a medullary pacemaker nucleus composed of electrotonically coupled intrinsic pacemaker and bulbospinal projecting relay cells. During agonistic encounters, Gymnotus omarorum signals submission by interrupting its EOD (offs) and emitting transient high-rate barrages of low-amplitude discharges (chirps). Previous studies in Gymnotiformes have shown that electric signal diversity is based on the segregation of descending synaptic inputs to pacemaker or relay cells and differential activation of the neurotransmitter receptors -for glutamate or γ-aminobutyric acid (GABA) - of these cells. Therefore, we tested whether GABAergic and glutamatergic inputs to pacemaker nucleus neurons are involved in the emission of submissive electric signals in G. omarorum We found that GABA applied to pacemaker cells evokes EOD interruptions that closely resemble natural offs. Although in other species chirping is probably due to glutamatergic suprathreshold depolarization of relay cells, here, application of glutamate to these cells was unable to replicate the emission of this submissive signal. Nevertheless, chirp-like discharges were emitted after the enhancement of excitability of relay cells by blocking an IA-type potassium current and, in some cases, by application of vasotocin, a status-dependent modulator peptide of G. omarorum agonistic behavior. Modulation of the electrophysiological properties of pacemaker nucleus neurons in Gymnotiformes emerges as a novel putative mechanism endowing electromotor networks with higher functional versatility.


Assuntos
Comunicação Animal , Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Comportamento Agonístico/fisiologia , Animais , Relógios Biológicos/fisiologia , Órgão Elétrico/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Feminino , Ácido Glutâmico/farmacologia , Masculino , Neurônios/fisiologia , Receptores de Neurotransmissores/fisiologia , Vasotocina/farmacologia , Ácido gama-Aminobutírico/farmacologia
13.
Adv Exp Med Biol ; 1175: 45-91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583584

RESUMO

Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Transdução de Sinais , Cálcio , Homeostase , Humanos , Bombas de Íon/fisiologia , Neuroglia , Receptores de Neurotransmissores/fisiologia , Sódio
14.
Physiol Rev ; 91(2): 461-553, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21527731

RESUMO

Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.


Assuntos
Microglia/fisiologia , Animais , Evolução Biológica , Encéfalo/citologia , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Movimento Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Quimiocinas/fisiologia , Citocinas/fisiologia , Humanos , Canais Iônicos/fisiologia , Microglia/ultraestrutura , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Fagocitose/fisiologia , Receptores de Neurotransmissores/fisiologia , Receptores de Reconhecimento de Padrão/fisiologia , Transdução de Sinais/fisiologia
15.
Med Sci Monit ; 24: 397-404, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29352772

RESUMO

BACKGROUND Congenital single-side deafness (SSD) affects sound localization even after cochlear implantation (CI) in some conditions. The medial nucleus of the trapezoid body (MNTB) plays an important role in binaural benefit and sound localization, but little is known about intrinsic molecular changes in MNTB with SSD. We aimed to observe changes in MNTB in early-developmental SSD rats, including the key neurotransmitters (GABA, Gly, Glu) and major receptors (GABAa-R/GABAb-R for GABA, Gly-R for Gly, and AMPA/NMDA for Glu). MATERIAL AND METHODS The model of early-developmental SSD was acquired by right cochlear ablation at P12 and confirmed by ABR. High-performance liquid chromatography fluorescence detection (HPLC-FLD) was performed to measure the levels of neurotransmitters in MNTB. The relative expression of neurotransmitter receptors was tested by quantitative real-time PCR analysis. RESULTS (1) The right MNTB of experimental rats had an increase in GABA, Gly, and Glu at 4 weeks after right cochlear ablation (P<0.05). (2) At 2 weeks, the left MNTB of experimental rats showed increases in GABAa-R, GABAb-R, Gly-R, and AMPA, while the right MNTB showed lower expression of NMDA (P<0.05). The higher receptors in left MNTB decreased to a level at which we found no difference at 1 week for GABAa-R and GABAb-R (P>0.05), and was even reversed for Gly-R and AMPA (P<0.05). (3) Gly level was significantly increased at 2 weeks bilaterally and continued to 4 weeks in the left MNTB (P<0.05). CONCLUSIONS Early-developmental SSD can lead to asymmetric distribution of neurotransmitters and receptors in MNTB, which can be the fundamental cause of defective sound localization after cochlear implantation.


Assuntos
Surdez/metabolismo , Neurotransmissores/fisiologia , Receptores de Neurotransmissores/fisiologia , Potenciais de Ação , Animais , Surdez/fisiopatologia , Feminino , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Receptores de Neurotransmissores/metabolismo , Corpo Trapezoide/citologia , Corpo Trapezoide/fisiologia , Ácido gama-Aminobutírico/metabolismo
16.
Microsc Microanal ; 24(6): 734-743, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420003

RESUMO

Previous studies have shown the anthelmintic efficacy of Senna alata, Senna alexandrina and Senna occidentalis on the zoonotic parasite Hymenolepis diminuta through microscopic studies on morphological structure. The present study is based on the light and confocal microscopic studies to understand if Senna extracts affect neurotransmitter activity of the parasites. A standard concentration (40 mg/mL) of the three leaf extracts and one set of 0.005 mg/mL concentration of the reference drug praziquantel were tested against the parasites, keeping another set of parasites in phosphate buffer saline as a control. Histochemical studies were carried out using acetylthiocholine iodide as the substrate and acetylcholinesterase as the marker enzyme for studying the expression of the neurotransmitter of the parasite and the staining intensity was observed under a light microscope. Immunohistochemical studies were carried out using anti serotonin primary antibody and fluorescence tagged secondary antibody and observed using confocal microscopy. Intensity of the stain decreases in treated parasites compared with the control which implies loss of activity of the neurotransmitters. These observations indicated that Senna have a strong anthelmintic effect on the parasite model and thus pose as a potential anthelmintic therapy.


Assuntos
Anti-Helmínticos/farmacologia , Hymenolepis diminuta/efeitos dos fármacos , Neurotransmissores/farmacologia , Receptores de Neurotransmissores/fisiologia , Senna/química , Animais , Extratos Vegetais/farmacologia , Folhas de Planta/química , Praziquantel/farmacologia
17.
Hautarzt ; 69(3): 204-209, 2018 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-29396640

RESUMO

Pruritus is one of the major symptoms of inflammatory skin diseases and strongly affects the quality of life in patients. Although the perception of pruritus and pain are closely intertwined, pruritus represents a distinct sensation, which is also significantly different to pain at a neurophysiological level. The pathophysiological basis of chronic and acute pruritus is not fully understood. Besides histamine, a plethora of different neuromediators of itch, including neurotrophins, neuropeptides and their corresponding receptors, have been identified. In atopic dermatitis the release of these mediators leads to an activation of immune cells, such as mast cells and eosinophilic granulocytes, which in turn release neuromediators and cytokines that activate peripheral neurons. This review focuses on the neurophysiological interactions which regulate pruritus and summarizes the function of neurological and inflammatory mediators in atopic pruritus.


Assuntos
Dermatite Atópica/fisiopatologia , Prurido/fisiopatologia , Citocinas/fisiologia , Eosinófilos/fisiologia , Humanos , Inflamação/fisiopatologia , Fatores de Crescimento Neural/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/fisiologia , Receptores de Neurotransmissores/fisiologia , Pele/inervação
18.
Rev Neurosci ; 26(1): 39-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25324444

RESUMO

Abstract It is widely believed that the proper activation of N-methyl-D-aspartate (NMDA) receptors (NMDARs) promotes neuronal survival, whereas an excessive activation of NMDARs leads to neuronal damage. NMDARs are found at both synaptic and extrasynaptic sites. One current prevailing theory proposes the dichotomy of NMDAR activity. The role of the two population receptors is mutual antagonism. The activation of synaptic NMDARs, such as synaptic activity at physiological levels, promotes neuronal survival. However, the activation of extrasynaptic NMDARs occurring during stroke, brain injury, and chronic neurological diseases contributes to neuronal death. Thus, the location of NMDARs determines the neuronal fate. However, the theory is greatly challenged. Several studies suggested that synaptic NMDARs are involved in neuronal death. Recently, our work further showed that the coactivation of synaptic and extrasynaptic NMDARs contributes to neuronal death under neuronal insults. Therefore, we propose that the magnitude and duration of NMDAR activation determines the neuronal fate. More interestingly, there appears to be some subtle differences in the affinity between synaptic and extrasynaptic NMDARs, shedding light on the development of selective drugs to block extrasynaptic NMDARs.


Assuntos
Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Humanos , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neurotransmissores/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
20.
Exp Dermatol ; 23(2): 79-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330223

RESUMO

Intact epidermal barrier function is crucial for survival and is associated with the presence of gradients of both calcium ion concentration and electric potential. Although many molecules, including ion channels and pumps, are known to contribute to maintenance of these gradients, the mechanisms involved in epidermal calcium ion dynamics have not been clarified. We have established that a variety of neurotransmitters and their receptors, originally found in the brain, are expressed in keratinocytes and are also associated with barrier homeostasis. Moreover, keratinocytes and neurons show some similarities of electrochemical behaviour. As mathematical modelling and computer simulation have been employed to understand electrochemical phenomena in brain science, we considered that a similar approach might be applicable to describe the dynamics of epidermal electrochemical phenomena associated with barrier homeostasis. Such methodology would also be potentially useful to address a number of difficult problems in clinical dermatology, such as ageing and itching. Although this work is at a very early stage, in this essay, we discuss the background to our approach and we present some preliminary results of simulation of barrier recovery.


Assuntos
Cálcio/farmacocinética , Simulação por Computador , Epiderme/fisiologia , Modelos Biológicos , Absorção Cutânea/fisiologia , Trifosfato de Adenosina/fisiologia , Ar , Animais , Canais de Cálcio/fisiologia , Comunicação Celular/fisiologia , Células Cultivadas , Eletroquímica , Homeostase , Humanos , Queratinócitos/fisiologia , Neurotransmissores/fisiologia , Permeabilidade , Prurido/fisiopatologia , Receptores de Neurotransmissores/fisiologia , Células Receptoras Sensoriais/fisiologia , Envelhecimento da Pele/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA