Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.032
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(22): 5527-5540.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644527

RESUMO

To secure phosphorus (P) from soil, most land plants use a direct phosphate uptake pathway via root hairs and epidermis and an indirect phosphate uptake pathway via mycorrhizal symbiosis. The interaction between these two pathways is unclear. Here, we mapped a network between transcription factors and mycorrhizal symbiosis-related genes using Y1H. Intriguingly, this gene regulatory network is governed by the conserved P-sensing pathway, centered on phosphate starvation response (PHR) transcription factors. PHRs are required for mycorrhizal symbiosis and regulate symbiosis-related genes via the P1BS motif. SPX-domain proteins suppress OsPHR2-mediated induction of symbiosis-related genes and inhibit mycorrhizal infection. In contrast, plants overexpressing OsPHR2 show improved mycorrhizal infection and are partially resistant to P-mediated inhibition of symbiosis. Functional analyses of network nodes revealed co-regulation of hormonal signaling and mycorrhizal symbiosis. This network deciphers extensive regulation of mycorrhizal symbiosis by endogenous and exogenous signals and highlights co-option of the P-sensing pathway for mycorrhizal symbiosis.


Assuntos
Redes Reguladoras de Genes , Micorrizas/genética , Micorrizas/fisiologia , Fosfatos/deficiência , Simbiose/genética , Simbiose/fisiologia , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/genética , Oryza/microbiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
Annu Rev Biochem ; 89: 769-793, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32243763

RESUMO

Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.


Assuntos
Microbioma Gastrointestinal/fisiologia , Glicocálix/química , Glicosiltransferases/química , Células Caliciformes/química , Mucinas/química , Muco/química , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Expressão Gênica , Glicocálix/metabolismo , Glicosilação , Glicosiltransferases/classificação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/microbiologia , Humanos , Mucinas/classificação , Mucinas/genética , Mucinas/metabolismo , Muco/metabolismo , Muco/microbiologia , Simbiose/fisiologia
3.
Nature ; 626(7998): 271-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326590

RESUMO

Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.


Assuntos
Inflamação , Mitocôndrias , Modelos Biológicos , Simbiose , Humanos , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Dieta/efeitos adversos , Homeostase , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Ácidos Nucleicos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simbiose/fisiologia , Animais
4.
Nature ; 619(7971): 788-792, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468625

RESUMO

Ecological interactions are one of the main forces that sustain Earth's biodiversity. A major challenge for studies of ecology and evolution is to determine how these interactions affect the fitness of species when we expand from studying isolated, pairwise interactions to include networks of interacting species1-4. In networks, chains of effects caused by a range of species have an indirect effect on other species they do not interact with directly, potentially affecting the fitness outcomes of a variety of ecological interactions (such as mutualism)5-7. Here we apply analytical techniques and numerical simulations to 186 empirical mutualistic networks and show how both direct and indirect effects alter the fitness of species coevolving in these networks. Although the fitness of species usually increased with the number of mutualistic partners, most of the fitness variation across species was driven by indirect effects. We found that these indirect effects prevent coevolving species from adapting to their mutualistic partners and to other sources of selection pressure in the environment, thereby decreasing their fitness. Such decreases are distributed in a predictable way within networks: peripheral species receive more indirect effects and experience higher reductions in fitness than central species. This topological effect was also evident when we analysed an empirical study of an invasion of pollination networks by honeybees. As honeybees became integrated as a central species within networks, they increased the contribution of indirect effects on several other species, reducing their fitness. Our study shows how and why indirect effects can govern the adaptive landscape of species-rich mutualistic assemblages.


Assuntos
Biodiversidade , Evolução Biológica , Aptidão Genética , Simbiose , Animais , Polinização , Simbiose/fisiologia , Abelhas/fisiologia
5.
Nature ; 620(7976): 1018-1024, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612503

RESUMO

Coral reefs are highly diverse ecosystems that thrive in nutrient-poor waters, a phenomenon frequently referred to as the Darwin paradox1. The energy demand of coral animal hosts can often be fully met by the excess production of carbon-rich photosynthates by their algal symbionts2,3. However, the understanding of mechanisms that enable corals to acquire the vital nutrients nitrogen and phosphorus from their symbionts is incomplete4-9. Here we show, through a series of long-term experiments, that the uptake of dissolved inorganic nitrogen and phosphorus by the symbionts alone is sufficient to sustain rapid coral growth. Next, considering the nitrogen and phosphorus budgets of host and symbionts, we identify that these nutrients are gathered through symbiont 'farming' and are translocated to the host by digestion of excess symbiont cells. Finally, we use a large-scale natural experiment in which seabirds fertilize some reefs but not others, to show that the efficient utilization of dissolved inorganic nutrients by symbiotic corals established in our laboratory experiments has the potential to enhance coral growth in the wild at the ecosystem level. Feeding on symbionts enables coral animals to tap into an important nutrient pool and helps to explain the evolutionary and ecological success of symbiotic corals in nutrient-limited waters.


Assuntos
Antozoários , Ecossistema , Nitrogênio , Fósforo , Fotossíntese , Simbiose , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Antozoários/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Simbiose/fisiologia , Aves/fisiologia
6.
Annu Rev Microbiol ; 76: 45-65, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395168

RESUMO

To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes.


Assuntos
Fabaceae , Rhizobium , Fabaceae/metabolismo , Imunidade Vegetal , Rhizobium/metabolismo , Simbiose/fisiologia , Sistemas de Secreção Tipo III/metabolismo
7.
Annu Rev Microbiol ; 75: 695-718, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351792

RESUMO

Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations.


Assuntos
Ecossistema , Fontes Hidrotermais , Animais , Bactérias/genética , Bactérias/metabolismo , Filogenia , Simbiose/fisiologia
8.
Plant Cell ; 35(2): 776-794, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36440970

RESUMO

Legumes acquire fixed nitrogen (N) from the soil and through endosymbiotic association with diazotrophic bacteria. However, establishing and maintaining N2-fixing nodules are expensive for the host plant, relative to taking up N from the soil. Therefore, plants suppress symbiosis when N is plentiful and enhance symbiosis when N is sparse. Here, we show that the nitrate transporter MtNRT2.1 is required for optimal nodule establishment in Medicago truncatula under low-nitrate conditions and the repression of nodulation under high-nitrate conditions. The NIN-like protein (NLP) MtNLP1 is required for MtNRT2.1 expression and regulation of nitrate uptake/transport under low- and high-nitrate conditions. Under low nitrate, the gene encoding the C-terminally encoded peptide (CEP) MtCEP1 was more highly expressed, and the exogenous application of MtCEP1 systemically promoted MtNRT2.1 expression in a compact root architecture 2 (MtCRA2)-dependent manner. The enhancement of nodulation by MtCEP1 and nitrate uptake were both impaired in the Mtnrt2.1 mutant under low nitrate. Our study demonstrates that nitrate uptake by MtNRT2.1 differentially affects nodulation at low- and high-nitrate conditions through the actions of MtCEP1 and MtNLP1.


Assuntos
Medicago truncatula , Nitratos , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia
9.
PLoS Biol ; 21(12): e3002434, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150463

RESUMO

Mutualistic interactions, such as plant-mycorrhizal or plant-pollinator interactions, are widespread in ecological communities and frequently exploited by cheaters, species that profit from interactions without providing benefits in return. Cheating usually negatively affects the fitness of the individuals that are cheated on, but the effects of cheating at the community level remains poorly understood. Here, we describe 2 different kinds of cheating in mutualistic networks and use a generalized Lotka-Volterra model to show that they have very different consequences for the persistence of the community. Conservative cheating, where a species cheats on its mutualistic partners to escape the cost of mutualistic interactions, negatively affects community persistence. In contrast, innovative cheating occurs with species with whom legitimate interactions are not possible, because of a physiological or morphological barrier. Innovative cheating can enhance community persistence under some conditions: when cheaters have few mutualistic partners, cheat at low or intermediate frequency and the cost associated with mutualism is not too high. Under these conditions, the negative effects of cheating on partner persistence are overcompensated at the community level by the positive feedback loops that arise in diverse mutualistic communities. Using an empirical dataset of plant-bird interactions (hummingbirds and flowerpiercers), we found that observed cheating patterns are highly consistent with theoretical cheating patterns found to increase community persistence. This result suggests that the cheating patterns observed in nature could contribute to promote species coexistence in mutualistic communities, instead of necessarily destabilizing them.


Assuntos
Micorrizas , Humanos , Simbiose/fisiologia , Plantas , Biota
10.
Proc Natl Acad Sci U S A ; 120(31): e2302721120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487102

RESUMO

Symbioses with microbes play a pivotal role in the evolutionary success of insects, and can lead to intimate host-symbiont associations. However, how the host maintains a stable symbiosis with its beneficial partners while keeping antagonistic microbes in check remains incompletely understood. Here, we uncover a mechanism by which a host protects its symbiont from the host's own broad-range antimicrobial defense during transmission. Beewolves, a group of solitary digger wasps (Hymenoptera: Crabronidae), provide their brood cells with symbiotic Streptomyces bacteria that are later transferred to the cocoon and protect the offspring from opportunistic pathogens by producing antibiotics. In the brood cell, however, the symbiont-containing secretion is exposed to a toxic burst of nitric oxide (NO) released by the beewolf egg, which effectively kills antagonistic microorganisms. How the symbiont survives this lethal NO burst remained unknown. Here, we report that upon NO exposure in vitro, the symbionts mount a global stress response, but this is insufficient to ensure survival at brood cell-level NO concentrations. Instead, in vivo bioassays demonstrate that the host's antennal gland secretion (AGS) surrounding the symbionts in the brood cell provides an effective diffusion barrier against NO. This physicochemical protection can be reconstituted in vitro by beewolf hydrocarbon extracts and synthetic hydrocarbons, indicating that the host-derived long-chain alkenes and alkanes in the AGS are responsible for shielding the symbionts from NO. Our results reveal how host adaptations can protect a symbiont from host-generated oxidative and nitrosative stress during transmission, thereby efficiently balancing pathogen defense and mutualism maintenance.


Assuntos
Anti-Infecciosos , Himenópteros , Animais , Evolução Biológica , Simbiose/fisiologia , Hidrocarbonetos
11.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37769258

RESUMO

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Assuntos
Heterópteros , Simbiose , Masculino , Animais , Simbiose/fisiologia , Sêmen , Sistema Digestório/microbiologia , Insetos , Heterópteros/fisiologia , Bactérias/genética , Metamorfose Biológica
12.
Proc Natl Acad Sci U S A ; 120(27): e2301884120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37368927

RESUMO

Arbuscular mycorrhizal fungi (AMF) can form a mutually beneficial symbiotic relationship with most land plants. They are known to secrete lysin motif (LysM) effectors into host root cells for successful colonization. Intriguingly, plants secrete similar types of LysM proteins; however, their role in plant-microbe interactions is unknown. Here, we show that Medicago truncatula deploys LysM extracellular (LysMe) proteins to facilitate symbiosis with AMF. Promoter analyses demonstrated that three M. truncatula LysMe genes MtLysMe1/2/3, are expressed in arbuscule-containing cells and those adjacent to intercellular hyphae. Localization studies showed that these proteins are targeted to the periarbuscular space between the periarbuscular membrane and the fungal cell wall of the branched arbuscule. M. truncatula mutants in which MtLysMe2 was knocked out via CRISPR/Cas9-targeted mutagenesis exhibited a significant reduction in AMF colonization and arbuscule formation, whereas genetically complemented transgenic plants restored wild-type level AMF colonization. In addition, knocking out the ortholog of MtLysMe2 in tomato resulted in a similar defect in AMF colonization. In vitro binding affinity precipitation assays suggested binding of MtLysMe1/2/3 with chitin and chitosan, while microscale thermophoresis (MST) assays revealed weak binding of these proteins with chitooligosaccharides. Moreover, application of purified MtLysMe proteins to root segments could suppress chitooctaose (CO8)-induced reactive oxygen species production and expression of reporter genes of the immune response without impairing chitotetraose (CO4)-triggered symbiotic responses. Taken together, our results reveal that plants, like their fungal partners, also secrete LysM proteins to facilitate symbiosis establishment.


Assuntos
Medicago truncatula , Micorrizas , Simbiose/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiologia , Hifas/metabolismo , Quitina/metabolismo , Medicago truncatula/microbiologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Proc Natl Acad Sci U S A ; 120(43): e2308448120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844224

RESUMO

Organisms across the tree of life colonize novel environments by partnering with bacterial symbionts. These symbioses are characterized by intimate integration of host/endosymbiont biology at multiple levels, including metabolically. Metabolic integration is particularly important for sap-feeding insects and their symbionts, which supplement nutritionally unbalanced host diets. Many studies reveal parallel evolution of host/endosymbiont metabolic complementarity in amino acid biosynthesis, raising questions about how amino acid metabolism is regulated, how regulatory mechanisms evolve, and the extent to which similar mechanisms evolve in different systems. In the aphid/Buchnera symbiosis, the transporter ApGLNT1 (Acyrthosiphon pisum glutamine transporter 1) supplies glutamine, an amino donor in transamination reactions, to bacteriocytes (where Buchnera reside) and is competitively inhibited by Buchnera-supplied arginine-consistent with a role regulating amino acid metabolism given host demand for Buchnera-produced amino acids. We examined how ApGLNT1 evolved a regulatory role by functionally characterizing orthologs in insects with and without endosymbionts. ApGLNT1 orthologs are functionally similar, and orthology searches coupled with homology modeling revealed that GLNT1 is ancient and structurally conserved across insects. Our results indicate that the ApGLNT1 symbiotic regulatory role is derived from its ancestral role and, in aphids, is likely facilitated by loss of arginine biosynthesis through the urea cycle. Given consistent loss of host arginine biosynthesis and retention of endosymbiont arginine supply, we hypothesize that GLNT1 is a general mechanism regulating amino acid metabolism in sap-feeding insects. This work fills a gap, highlighting the broad importance of co-option of ancestral proteins to novel contexts in the evolution of host/symbiont systems.


Assuntos
Afídeos , Buchnera , Animais , Glutamina/metabolismo , Afídeos/microbiologia , Buchnera/genética , Buchnera/metabolismo , Aminoácidos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arginina/metabolismo , Simbiose/fisiologia
14.
Physiol Rev ; 98(2): 781-811, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488821

RESUMO

It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Inflamação/imunologia , Microbiota/fisiologia , Infecções Respiratórias/microbiologia , Animais , Bactérias , Humanos , Infecções Respiratórias/fisiopatologia , Simbiose/fisiologia
15.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775577

RESUMO

Animal development is an inherently complex process that is regulated by highly conserved genomic networks, and the resulting phenotype may remain plastic in response to environmental signals. Despite development having been studied in a more natural setting for the past few decades, this framework often precludes the role of microbial prokaryotes in these processes. Here, we address how microbial symbioses impact animal development from the onset of gametogenesis through adulthood. We then provide a first assessment of which developmental processes may or may not be influenced by microbial symbioses and, in doing so, provide a holistic view of the budding discipline of developmental symbiosis.


Assuntos
Simbiose , Animais , Fenótipo , Simbiose/fisiologia
16.
Plant Cell ; 34(5): 1573-1599, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35157080

RESUMO

Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Micorrizas/fisiologia , Fixação de Nitrogênio , Fosfatos , Plantas/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia
17.
Plant Cell ; 34(10): 4045-4065, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35863053

RESUMO

Forming mutualistic symbioses with arbuscular mycorrhizae (AMs) improves the acquisition of mineral nutrients for most terrestrial plants. However, the formation of AM symbiosis usually occurs under phosphate (Pi)-deficient conditions. Here, we identify SlSPX1 (SYG1 (suppressor of yeast GPA1)/Pho81(phosphate 81)/XPR1 (xenotropic and polytropic retrovirus receptor 1) as the major repressor of the AM symbiosis in tomato (Solanum lycopersicum) under phosphate-replete conditions. Loss of SlSPX1 function promotes direct Pi uptake and enhances AM colonization under phosphate-replete conditions. We determine that SlSPX1 integrates Pi signaling and AM symbiosis by directly interacting with a set of arbuscule-induced SlPHR proteins (SlPHR1, SlPHR4, SlPHR10, SlPHR11, and SlPHR12). The association with SlSPX1 represses the ability of SlPHR proteins to activate AM marker genes required for the arbuscular mycorrhizal symbiosis. SlPHR proteins exhibit functional redundancy, and no defective AM symbiosis was detected in the single mutant of SlPHR proteins. However, silencing SlPHR4 in the Slphr1 mutant background led to reduced AM colonization. Therefore, our results support the conclusion that SlSPX1-SlPHRs form a Pi-sensing module to coordinate the AM symbiosis under different Pi-availability conditions.


Assuntos
Micorrizas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Minerais/metabolismo , Micorrizas/fisiologia , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Simbiose/fisiologia
18.
Plant Cell ; 34(5): 1844-1862, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35146519

RESUMO

Legumes have adaptive mechanisms that regulate nodulation in response to the amount of nitrogen in the soil. In Lotus japonicus, two NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors, LjNLP4 and LjNLP1, play pivotal roles in the negative regulation of nodulation by controlling the expression of symbiotic genes in high nitrate conditions. Despite an improved understanding of the molecular basis for regulating nodulation, how nitrate plays a role in the signaling pathway to negatively regulate this process is largely unknown. Here, we show that nitrate transport via NITRATE TRANSPORTER 2.1 (LjNRT2.1) is a key step in the NLP signaling pathway to control nodulation. A mutation in the LjNRT2.1 gene attenuates the nitrate-induced control of nodulation. LjNLP1 is necessary and sufficient to induce LjNRT2.1 expression, thereby regulating nitrate uptake/transport. Our data suggest that LjNRT2.1-mediated nitrate uptake/transport is required for LjNLP4 nuclear localization and induction/repression of symbiotic genes. We further show that LjNIN, a positive regulator of nodulation, counteracts the LjNLP1-dependent induction of LjNRT2.1 expression, which is linked to a reduction in nitrate uptake. These findings suggest a plant strategy in which nitrogen acquisition switches from obtaining nitrogen from the soil to symbiotic nitrogen fixation.


Assuntos
Lotus , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Solo , Simbiose/fisiologia
19.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022241

RESUMO

Decades of culture-independent analyses have resulted in proposals of many tentative archaeal phyla with no cultivable representative. Members of DPANN (an acronym of the names of the first included phyla Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota, and Nanoarchaeota), an archaeal superphylum composed of at least 10 of these tentative phyla, are generally considered obligate symbionts dependent on other microorganisms. While many draft/complete genome sequences of DPANN archaea are available and their biological functions have been considerably predicted, only a few examples of their successful laboratory cultivation have been reported, limiting our knowledge of their symbiotic lifestyles. Here, we investigated physiology, morphology, and host specificity of an archaeon of the phylum "Candidatus Micrarchaeota" (ARM-1) belonging to the DPANN superphylum by cultivation. We constructed a stable coculture system composed of ARM-1 and its original host Metallosphaera sp. AS-7 belonging to the order Sulfolobales Further host-switching experiments confirmed that ARM-1 grew on five different archaeal species from three genera-Metallosphaera, Acidianus, and Saccharolobus-originating from geologically distinct hot, acidic environments. The results suggested the existence of DPANN archaea that can grow by relying on a range of hosts. Genomic analyses showed inferred metabolic capabilities, common/unique genetic contents of ARM-1 among cultivated micrarchaeal representatives, and the possibility of horizontal gene transfer between ARM-1 and members of the order Sulfolobales Our report sheds light on the symbiotic lifestyles of DPANN archaea and will contribute to the elucidation of their biological/ecological functions.


Assuntos
Archaea/genética , Archaea/fisiologia , Genoma Arqueal , Simbiose/genética , Simbiose/fisiologia , Archaea/classificação , Archaea/citologia , Técnicas de Cocultura , Evolução Molecular , Transferência Genética Horizontal , Genômica , Nanoarchaeota , Filogenia
20.
Proc Natl Acad Sci U S A ; 119(34): e2205920119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972963

RESUMO

Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.


Assuntos
Canais de Cálcio , Sinalização do Cálcio , Medicago truncatula , Proteínas de Plantas , Nodulação , Raízes de Plantas , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Núcleo Celular/metabolismo , Mutação com Ganho de Função , Regulação da Expressão Gênica de Plantas , Células HEK293 , Humanos , Medicago truncatula/genética , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nodulação/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA