Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(1): e1009175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428681

RESUMO

The zig-zag model of host-pathogen interaction describes the relative strength of defense response across a spectrum of pathogen-induced plant phenotypes. A stronger defense response results in increased resistance. Here, we investigate the strength of pathogen virulence during disease and place these findings in the context of the zig-zag model. Xanthomonas vasicola pv. holcicola (Xvh) causes sorghum bacterial leaf streak. Despite being widespread, this disease has not been described in detail at the molecular level. We divided diverse sorghum genotypes into three groups based on disease symptoms: water-soaked lesions, red lesions, and resistance. Bacterial growth assays confirmed that these three phenotypes represent a range of resistance and susceptibility. To simultaneously reveal defense and virulence responses across the spectrum of disease phenotypes, we performed dual RNA-seq on Xvh-infected sorghum. Consistent with the zig-zag model, the expression of plant defense-related genes was strongest in the resistance interaction. Surprisingly, bacterial virulence genes related to the type III secretion system (T3SS) and type III effectors (T3Es) were also most highly expressed in the resistance interaction. This expression pattern was observed at multiple time points within the sorghum-Xvh pathosystem. Further, a similar expression pattern was observed in Arabidopsis infected with Pseudomonas syringae for effector-triggered immunity via AvrRps4 but not AvrRpt2. Specific metabolites were able to repress the Xvh virulence response in vitro and in planta suggesting a possible signaling mechanism. Taken together, these findings reveal multiple permutations of the continually evolving host-pathogen arms race from the perspective of host defense and pathogen virulence responses.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/microbiologia , Sorghum/microbiologia , Virulência , Xanthomonas/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Sorghum/genética , Sorghum/imunologia , Transcriptoma , Xanthomonas/genética , Xanthomonas/imunologia
2.
BMC Plant Biol ; 21(1): 392, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418971

RESUMO

BACKGROUND: Sorghum yields in sub-Saharan Africa (SSA) are greatly reduced by parasitic plants of the genus Striga (witchweed). Vast global sorghum genetic diversity collections, as well as the availability of modern sequencing technologies, can be potentially harnessed to effectively manage the parasite. RESULTS: We used laboratory assays - rhizotrons to screen a global sorghum diversity panel to identify new sources of resistance to Striga; determine mechanisms of resistance, and elucidate genetic loci underlying the resistance using genome-wide association studies (GWAS). New Striga resistant sorghum determined by the number, size and biomass of parasite attachments were identified. Resistance was by; i) mechanical barriers that blocked parasite entry, ii) elicitation of a hypersensitive reaction that interfered with parasite development, and iii) the inability of the parasite to develop vascular connections with hosts. Resistance genes underpinning the resistance corresponded with the resistance mechanisms and included pleiotropic drug resistance proteins that transport resistance molecules; xylanase inhibitors involved in cell wall fortification and hormonal regulators of resistance response, Ethylene Response Factors. CONCLUSIONS: Our findings are of fundamental importance to developing durable and broad-spectrum resistance against Striga and have far-reaching applications in many SSA countries where Striga threatens the livelihoods of millions of smallholder farmers that rely on sorghum as a food staple.


Assuntos
Geografia , Interações Hospedeiro-Parasita/genética , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Sorghum/genética , Sorghum/imunologia , Striga/genética , Striga/parasitologia , África Subsaariana , Grão Comestível/genética , Grão Comestível/imunologia , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Interações Hospedeiro-Parasita/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia
3.
Theor Appl Genet ; 134(4): 1167-1184, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33452894

RESUMO

KEY MESSAGE: GWAS analysis revealed variations at loci harboring seed storage, late embryogenesis abundant protein, and a tannin biosynthesis gene associated with sorghum grain mold resistance. Grain mold is the most important disease of sorghum [Sorghum bicolor (L.) Moench]. It starts at the early stages of grain development due to concurrent infection by multiple fungal species. The genetic architecture of resistance to grain mold is poorly understood. Using a diverse set of 635 Ethiopian sorghum accessions, we conducted a multi-stage disease rating for resistance to grain mold under natural infestation in the field. Through genome-wide association analyses with 173,666 SNPs and multiple models, two novel loci were identified that were consistently associated with grain mold resistance across environments. Sequence variation at new loci containing sorghum KAFIRIN gene encoding a seed storage protein affecting seed texture and LATE EMBRYOGENESIS ABUNDANT 3 (LEA3) gene encoding a protein that accumulates in seeds, previously implicated in stress tolerance, were significantly associated with grain mold resistance. The KAFIRIN and LEA3 loci were also significant factors in grain mold resistance in accessions with non-pigmented grains. Moreover, we consistently detected the known SNP (S4_62316425) in TAN1 gene, a regulator of tannin accumulation in sorghum grain to be significantly associated with grain mold resistance. Identification of loci associated with new mechanisms of resistance provides fresh insight into genetic control of the trait, while the highly resistant accessions can serve as sources of resistance genes for breeding. Overall, our association data suggest the critical role of loci harboring seed protein genes and implicate grain chemical and physical properties in sorghum grain mold resistance.


Assuntos
Resistência à Doença/imunologia , Fusarium/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Sementes/imunologia , Sorghum/imunologia , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Sementes/genética , Sementes/microbiologia , Sorghum/genética , Sorghum/microbiologia
4.
Mol Plant Microbe Interact ; 33(2): 235-246, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31721651

RESUMO

Herbaspirillum rubrisubalbicans is the causal agent of red stripe disease (RSD) and mottle stripe disease of sorghum and sugarcane, respectively. In all, 63 genotypes of Sorghum bicolor were inoculated with H. rubrisubalbicans, with 59 showing RSD symptoms. Quantitative trait loci (QTL) analysis in a recombinant inbred line (RIL) population identified several QTL associated with variation in resistance to RSD. RNA sequencing analysis identified a number of genes whose transcript levels were differentially regulated during H. rubrisubalbicans infection. Among those genes that responded to H. rubrisubalbicans inoculation were many involved in plant-pathogen interactions such as leucine-rich repeat receptors, mitogen-activated protein kinase 1, calcium-binding proteins, transcriptional factors (ethylene-responsive element binding factor), and callose synthase. Pretreatment of sorghum leaves with the pathogen-associated molecular pattern (PAMP) molecules flg22 and chitooctaose provided protection against subsequent challenge with the pathogen, suggesting that PAMP-triggered immunity plays an important role in the sorghum immunity response. These data present baseline information for the use of the genetically tractable H. rubrisubalbicans-sorghum pathosystem for the study of innate immunity and disease resistance in this important grain and bioenergy crop. Information gained from the use of this system is likely to be informative for other monocots, including those more intractable for experimental study (e.g., sugarcane).


Assuntos
Resistência à Doença , Herbaspirillum , Doenças das Plantas , Sorghum , Resistência à Doença/genética , Resistência à Doença/imunologia , Herbaspirillum/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Sorghum/genética , Sorghum/imunologia , Sorghum/microbiologia
5.
Plant Mol Biol ; 101(1-2): 95-112, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31236845

RESUMO

KEY MESSAGE: Sorghum glycine rich proline rich protein (SbGPRP1) exhibit antimicrobial properties and play a crucial role during biotic stress condition. Several proteins in plants build up the innate immune response system in plants which get triggered during the occurrence of biotic stress. Here we report the functional characterization of a glycine-rich proline-rich protein (SbGPRP1) from Sorghum which was previously demonstrated to be involved in abiotic stresses. Expression studies carried out with SbGPRP1 showed induced expression upon application of phytohormones like salicylic acid which might be the key in fine-tuning the expression level. Upon challenging the Sorghum plants with a compatible pathogen the SbGprp1 transcript was found to be upregulated. SbGPRP1 encodes a 197 amino acid polypeptide which was bacterially-expressed and purified for in vitro assays. Gram-positive bacteria like Bacillus and phytopathogen Rhodococcus fascians showed inhibited growth in the presence of the protein. The NPN assay, electrolytic leakage and SEM analysis showed membrane damage in bacterial cells. Ectopic expression of SbGPRP1 in tobacco plants led to enhanced tolerance towards infection caused by R. fascians. Though the N-terminal part of the protein showed disorderness the C-terminal end was quite capable of forming several α-helices which was correlated with CD spectroscopic analysis. Here, we have tried to determine the structural model for the protein and predicted the association of antimicrobial activity with the C-terminal region of the protein.


Assuntos
Anti-Infecciosos/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Sorghum/genética , Bacillus/efeitos dos fármacos , Expressão Ectópica do Gene , Glicina/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Prolina/metabolismo , Rhodococcus/efeitos dos fármacos , Sorghum/imunologia , Sorghum/metabolismo , Sorghum/microbiologia , Estresse Fisiológico , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia
6.
Theor Appl Genet ; 132(5): 1389-1396, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30688991

RESUMO

KEY MESSAGE: SNPs identify prospective genes related to response to Colletotrichum sublineola (anthracnose) in the sorghum association panel lines. Sorghum association panel (SAP) lines were scored over several years for response to Colletotrichum sublineola, the causal agent of the disease anthracnose. Known resistant and susceptible lines were included each year to verify successful inoculation. Over 79,000 single-nucleotide polymorphic (SNP) loci from a publicly available genotype by sequencing dataset available for the SAP lines were used with TASSEL association mapping software to identify chromosomal locations associated with differences in disease response. When the top-scoring SNPs were mapped to the published sorghum genome, in each case, the nearest annotated gene has precedence for a role in host defense.


Assuntos
Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Mapeamento Cromossômico , Colletotrichum , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sorghum/imunologia , Sorghum/microbiologia , Texas
8.
Asian Pac J Allergy Immunol ; 35(4): 191-195, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28364408

RESUMO

BACKGROUND: Allergen extracts may be different due to the difference in dissemination of allergen-containing species in various geographical areas. Therefore, we wish to develop our own extracts to ensure the precision and quality of diagnosis. OBJECTIVES: To compare the efficacy and safety of our locally prepared pollen allergen extracts to imported ones, using skin prick testing (SPT) and serum specific IgE (sIgE) as references. METHODS: This prospective, randomized, double-blinded, self-controlled study was performed in respiratory allergic adult volunteers who are sensitized to at least one kind of pollen. Each subject was pricked with our Bermuda grass, Johnson grass and careless weed pollen allergen extracts, and also with the imported ones. sIgE levels were measured by using ImmunoCAP?. RESULTS: In 68 volunteers, our Bermuda, Johnson and careless weed extracts showed 91.2%, 45.6% and 54.4% positive SPTs, respectively, while for the imported ones 73.5%, 45.6% and 54.4% SPTs were positive, respectively. No adverse reaction was found in all procedures. The concentration of 10,000 BAU/mL of Bermuda grass, 1 : 20 w/v or 10,000 PNU/mL of Johnson grass and 1 : 40 w/v or 10,000 PNU/mL of careless weed yielded the most positive SPT results. There was no significant difference in mean wheal diameter (MWD) yielded from using local and imported extracts. Significant correlation was found between MWDs of imported pollen extracts and serum sIgE levels (p < 0.01). CONCLUSIONS: No significant difference between SPT results of local and imported pollen allergen extracts was found. Significant correlation was found between MWDs of imported pollen extract SPT and serum sIgE levels.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Extratos Vegetais/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/diagnóstico , Adolescente , Adulto , Cynodon/imunologia , Método Duplo-Cego , Feminino , Humanos , Imunoglobulina E/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Testes Cutâneos , Sorghum/imunologia , Adulto Jovem
9.
J Allergy Clin Immunol ; 135(1): 133-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25129679

RESUMO

BACKGROUND: Genomic data are lacking for many allergen sources. To circumvent this limitation, we implemented a strategy to reveal the repertoire of pollen allergens of a grass with clinical importance in subtropical regions, where an increasing proportion of the world's population resides. OBJECTIVE: We sought to identify and immunologically characterize the allergenic components of the Panicoideae Johnson grass pollen (JGP; Sorghum halepense). METHODS: The total pollen transcriptome, proteome, and allergome of JGP were documented. Serum IgE reactivities with pollen and purified allergens were assessed in 64 patients with grass pollen allergy from a subtropical region. RESULTS: Purified Sor h 1 and Sor h 13 were identified as clinically important allergen components of JGP with serum IgE reactivity in 49 (76%) and 28 (43.8%), respectively, of patients with grass pollen allergy. Within whole JGP, multiple cDNA transcripts and peptide spectra belonging to grass pollen allergen families 1, 2, 4, 7, 11, 12, 13, and 25 were identified. Pollen allergens restricted to subtropical grasses (groups 22-24) were also present within the JGP transcriptome and proteome. Mass spectrometry confirmed the IgE-reactive components of JGP included isoforms of Sor h 1, Sor h 2, Sor h 13, and Sor h 23. CONCLUSION: Our integrated molecular approach revealed qualitative differences between the allergenic components of JGP and temperate grass pollens. Knowledge of these newly identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with grass pollen allergy in subtropical regions and reduce the burden of allergic respiratory disease globally.


Assuntos
Alérgenos/imunologia , Pólen/imunologia , Rinite Alérgica/imunologia , Sorghum/imunologia , Adulto , Antígenos de Plantas/imunologia , Feminino , Humanos , Imunoglobulina E/sangue , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/farmacologia , Proteínas de Plantas/imunologia , Proteoma , Rinite Alérgica/sangue , Testes Cutâneos , Transcriptoma , Clima Tropical
10.
Ann Allergy Asthma Immunol ; 114(3): 214-220.e2, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25744907

RESUMO

BACKGROUND: Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. OBJECTIVE: To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. METHODS: Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. RESULTS: Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. CONCLUSION: Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.


Assuntos
Cynodon/imunologia , Imunoglobulina E/sangue , Paspalum/imunologia , Rinite Alérgica Sazonal/imunologia , Sorghum/imunologia , Adulto , Alérgenos/imunologia , Alérgenos/uso terapêutico , Antígenos de Plantas/imunologia , Estudos de Casos e Controles , Reações Cruzadas/imunologia , Dessensibilização Imunológica , Feminino , Humanos , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/imunologia , Pólen/imunologia , Distribuição Aleatória
11.
Phytopathology ; 105(6): 786-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626075

RESUMO

Loss of function mutations in waxy, encoding granule bound starch synthase (GBSS) that synthesizes amylose, results in starch granules containing mostly amylopectin. Low amylose grain with altered starch properties has increased usability for feed, food, and grain-based ethanol. In sorghum, two classes of waxy (wx) alleles had been characterized for absence or presence of GBSS: wx(a) (GBSS(-)) and wx(b) (GBSS(+), with reduced activity). Field-grown grain of wild-type; waxy, GBSS(-); and waxy, GBSS(+) plant introduction accessions were screened for fungal infection. Overall, results showed that waxy grains were not more susceptible than wild-type. GBSS(-) and wild-type grain had similar infection levels. However, height was a factor with waxy, GBSS(+) lines: short accessions (wx(b) allele) were more susceptible than tall accessions (undescribed allele). In greenhouse experiments, grain from accessions and near-isogenic wx(a), wx(b), and wild-type lines were inoculated with Alternaria sp., Fusarium thapsinum, and Curvularia sorghina to analyze germination and seedling fitness. As a group, waxy lines were not more susceptible to these pathogens than wild-type, supporting field evaluations. After C. sorghina and F. thapsinum inoculations most waxy and wild-type lines had reduced emergence, survival, and seedling weights. These results are valuable for developing waxy hybrids with resistance to grain-infecting fungi.


Assuntos
Alternaria/fisiologia , Ascomicetos/fisiologia , Fusarium/fisiologia , Doenças das Plantas/imunologia , Sorghum/enzimologia , Sintase do Amido/genética , Alelos , Amilose/metabolismo , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/imunologia , Genótipo , Mutação , Proteínas de Plantas/genética , Sorghum/genética , Sorghum/imunologia , Amido/metabolismo
12.
J Econ Entomol ; 108(2): 576-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470168

RESUMO

The graminous host range and sources of sorghum [Sorghum bicolor (L.) Moench.] plant resistance, including cross-resistance from greenbug, Schizaphis graminum (Rondani), were studied for the newly emerging sugarcane aphid, Melanaphis sacchari (Zehntner), in greenhouse no-choice experiments and field evaluations. The sugarcane aphid could not survive on field corn, Zea mays (L.), Teff grass, Eragrostis tef (Zucc.), proso millet, Panicum miliaceum L., barley, Hordeum vulgare L., and rye, Secale cereale L. Only sorghum genotypes served as hosts including Johnsongrass, Sorghum halepense (L.), a highly suitable noncrop host that generates high numbers of sugarcane aphid and maintains moderate phenotypic injury. The greenbug-resistant parental line RTx2783 that is resistant to greenbug biotypes C and E was resistant to sugarcane aphid in both greenhouse and field tests, while PI 55607 greenbug resistant to biotypes B, C, and E was highly susceptible. PI 55610 that is greenbug resistant to biotypes B, C, and E maintained moderate resistance to the sugarcane aphid, while greenbug-resistant PI 264453 was highly susceptible to sugarcane aphid. Two lines and two hybrids from the Texas A&M breeding program B11070, B11070, AB11055-WF1-CS1/RTx436, and AB11055-WF1-CS1/RTx437 were highly resistant to sugarcane aphid, as were parental types SC110, SC170, and South African lines Ent62/SADC, (Macia/TAM428)-LL9, (SV1*Sima/IS23250)-LG15. Tam428, a parental line that previously showed moderate resistance in South Africa and India, also showed moderate resistance in these evaluations. Overall, 9 of 20 parental sorghum entries tested for phenotypic damage in the field resulted in good resistance to the sugarcane aphid and should be utilized in breeding programs that develop agronomically acceptable sorghums for the southern regions of the United States.


Assuntos
Afídeos , Sorghum/imunologia , Animais , Especificidade de Hospedeiro , Fenótipo
13.
Indian J Exp Biol ; 53(11): 726-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26669015

RESUMO

In India, 20-30% of the human population suffer from allergic rhinitis and 15% of them develop asthma. Plant pollens are one of the causative aeroallergens and are mixture of a number of molecules including major and minor allergens (Panallergens). Profilin and polcalcin are the known pollen specific panallergens. Allergenicity of the Sorghum plant in Andhra Pradesh was found to be 54.9%. But the allergens responsible have not been characterized well. This study highlights identification and molecular characterization of Sorghum bicolor profilin (Sorb PF) and S. bicolor polcalcin (Sorb PC) allergen genes based on homology. The coding sequences of the two genes were PCR amplified from the cDNA constructed from Sorghum pollen total RNA. The gene sequences were deposited in NCBI, KC427126 and KC427125. Recombinantly expressed histidine tag (His-tag) purified Sorghum polcalcin and profilin confirmed 9 and 14 kDa proteins, respectively. Based on multiple sequence alignment and phylogenetic analysis, Sorghum polcalcin and profilin were found to be closely related with Cynodon dactylon, Phleum pratense and Oryza sativa grass species. In silico Algpred based screening of SorbPF and SorbPC showed an allergenicity score of 1.149 and 0.879, respectively. The structure of two Ef-hand sequences (DTNGDGKISLSEL and DTDGDGFIDFNEF) of SorbPC showed an exact match with Phlp7. It is concluded that Sorghum recombinant profilin and polcalcin proteins can be of potential use in developing diagnostic kits for allergenicity to Sorghum pollen grains.


Assuntos
Alérgenos/química , Antígenos de Plantas/química , Profilinas/química , Sorghum/imunologia , Sequência de Aminoácidos , Simulação por Computador , Dados de Sequência Molecular , Pólen/química , Pólen/imunologia , Homologia de Sequência de Aminoácidos
14.
BMC Plant Biol ; 14: 253, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25928459

RESUMO

BACKGROUND: Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. RESULTS: In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. CONCLUSIONS: NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the "arms race" with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.


Assuntos
Resistência à Doença/genética , Evolução Molecular , Sorghum/genética , Família Multigênica , Polimorfismo Genético , Sorghum/imunologia
15.
BMC Plant Biol ; 14: 366, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551674

RESUMO

BACKGROUND: Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen Puccinia purpurea, which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. RESULTS: In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. CONCLUSIONS: The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect rust resistance QTL. The distinction of disease resistance QTL hot-spots, enriched with defence-related gene families from QTL which impact on development and partitioning, provides plant breeders with knowledge which will allow for fast-tracking varieties with both durable pathogen resistance and appropriate adaptive traits.


Assuntos
Fungos/patogenicidade , Locos de Características Quantitativas , Sorghum/genética , Sorghum/microbiologia , Sorghum/imunologia
16.
Plant Cell Environ ; 37(4): 929-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24118061

RESUMO

Arbuscular mycorrhizas (AM) can increase plant acquisition of P and N. No published studies have investigated the impact of P and AM on the allocation of N to the plant defence, cyanogenic glucosides. We investigated the effects of soil P and AM on cyanogenic glucoside (dhurrin) concentration in roots and shoots of two forage sorghum lines differing in cyanogenic potential (HCNp). Two harvest times allowed plants grown at high and low P to be compared at the same age and the same size, to take account of known ontogenetic changes in shoot HCNp. P responses were dependent on ontogeny and tissue type. At the same age, P-limited plants were smaller and had higher shoot HCNp but lower root HCNp. Ontogenetically controlled comparisons showed a P effect of lesser magnitude, and that there was also an increase in the allocation of N to dhurrin in shoots of P-limited plants. Colonization by AM had little effect on shoot HCNp, but increased root HCNp and the allocation of N to dhurrin in roots. Divergent responses of roots and shoots to P, AM and with ontogeny demonstrate the importance of broadening the predominantly foliar focus of plant defence studies/theory, and of ontogenetically controlled comparisons.


Assuntos
Micorrizas/efeitos dos fármacos , Fósforo/farmacologia , Sorghum/crescimento & desenvolvimento , Sorghum/imunologia , Biomassa , Contagem de Colônia Microbiana , Cianeto de Hidrogênio/metabolismo , Micorrizas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sorghum/efeitos dos fármacos
17.
Int Arch Allergy Immunol ; 163(2): 135-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24356415

RESUMO

BACKGROUND: Rare case reports of allergic reactions to beer have been published, but the nature of the eliciting substances in beer ingredients is often unknown. OBJECTIVE: It was the aim of this study to identify sensitization patterns against various beer ingredients in Chinese individuals with beer allergy. METHODS: Twenty-seven Chinese individuals with a clear-cut history of beer allergy were prescreened to answer a specific questionnaire related to the history and symptoms of beer allergy. Twenty individuals underwent allergy diagnostics with different food allergens and extracts of beer ingredients using the skin prick test (SPT) and the open oral provocation test (OPT) with beer. RESULTS: Fifteen patients (75%) showed positive reactions to one or more beer ingredients. Of these, 9 individuals, reactive to sorghum and/or sorghum malt also showed positive reactions to other ingredients. Seventeen individuals showed variable symptoms after the OPT. Cutaneous erythema and urticaria were the most common symptoms and usually persisted for over 2 h. There were no significant differences in SPT reactivity to beer ingredients between male and female individuals. Single patients reacted to barley, hops or yeast. CONCLUSIONS: Sensitization to sorghum and/or sorghum malt was the most common finding in Chinese individuals with beer allergy.


Assuntos
Antígenos de Plantas/isolamento & purificação , Cerveja/efeitos adversos , Hipersensibilidade Alimentar/imunologia , Sorghum/imunologia , Leveduras/imunologia , Adulto , Alérgenos/efeitos adversos , Alérgenos/imunologia , Antígenos de Fungos/imunologia , Antígenos de Fungos/isolamento & purificação , Antígenos de Plantas/imunologia , Cerveja/análise , China , Feminino , Hipersensibilidade Alimentar/epidemiologia , Hordeum/imunologia , Humanos , Imunização , Masculino , Prevalência , Estudos Prospectivos , Testes Cutâneos , Adulto Jovem
18.
J Insect Sci ; 14: 193, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25480976

RESUMO

This research investigated the role of oxidative enzymes in the defense response of sorghum, Sorghum bicolor (L.) Moench (Poales: Poaceae), to the sorghum shoot fly, Atherigona soccata Rondani (Diptera: Muscidae). Changes in polyphenol oxidase and peroxidase activity and total protein content were observed in resistant and susceptible sorghum genotypes in response to A. soccata feeding. Resistant plants exhibited higher levels of peroxidase and polyphenol oxidase activities and total protein content compared with susceptible plants. Peroxidase and polyphenol oxidase activities and total protein content in the infested resistant and susceptible genotypes were higher when compared with their control plants, respectively. These findings suggest that resistant genotypes may be able to tolerate shoot fly feeding by increasing their peroxidase and polyphenol oxidase activities. Among the enzymes examined, differences in isozyme profiles for peroxidase and polyphenol oxidase were detected between control and infested IS 18551, M35-1, 296B, SSV 84, and DJ 6514 plants. Differences in protein profiles were observed between A. soccata infested and their respective uninfested controls of all the genotypes. In conclusion, this study revealed that these defense enzymes and proteins might attribute to the resistance mechanisms in sorghum plants against A. soccata infestation.


Assuntos
Catecol Oxidase/metabolismo , Muscidae/fisiologia , Peroxidase/metabolismo , Proteínas de Plantas/genética , Sorghum/genética , Sorghum/imunologia , Animais , Cadeia Alimentar , Proteínas de Plantas/metabolismo , Sorghum/metabolismo
19.
Theor Appl Genet ; 126(3): 663-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117720

RESUMO

Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.


Assuntos
Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/genética , Sorghum/genética , Triticum/genética , Alelos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Evolução Molecular , Éxons , Fungos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Haplótipos , Dados de Sequência Molecular , Oryza/imunologia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Sorghum/imunologia , Triticum/imunologia
20.
Theor Appl Genet ; 124(6): 1005-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22143275

RESUMO

The aim of this work was to identify plant resistance genes to the sorghum anthracnose fungus Colletotrichum sublineolum. cDNA-AFLP transcript profiling on two contrasting sorghum genotypes inoculated with C. sublineolum generated about 3,000 informative fragments. In a final set of 126 sequenced genes, 15 were identified as biotic stress related. Seven of the plant-derived genes were selected for functional analysis using a Brome mosaic virus-based virus-induced gene silencing (VIGS) system followed by fungal inoculation and quantitative real-time PCR analysis. The candidate set comprised genes encoding resistance proteins (Cs1A, Cs2A), a lipid transfer protein (SbLTP1), a zinc finger-like transcription factor (SbZnTF1), a rice defensin-like homolog (SbDEFL1), a cell death related protein (SbCDL1), and an unknown gene harboring a casein kinase 2-like domain (SbCK2). Our results demonstrate that down-regulation of Cs1A, Cs2A, SbLTP1, SbZnF1 and SbCD1 via VIGS, significantly compromised the resistance response while milder effects were observed with SbDEFL1 and SbCK2. Expanded genome analysis revealed that Cs1A and Cs2A genes are located in two different loci on chromosome 9 closely linked with duplicated genes Cs1B and Cs2B, respectively. The nucleotide binding-leucine rich repeat (NB-LRR) encoding Cs gene sequence information is presently employed in regional breeding programs.


Assuntos
Colletotrichum/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal , Proteínas de Plantas/genética , Sorghum/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Cromossomos de Plantas/genética , Colletotrichum/crescimento & desenvolvimento , Resistência à Doença , Regulação para Baixo , Genes de Plantas , Loci Gênicos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sorghum/imunologia , Sorghum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA