Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Microbiol ; 61(4): e0171222, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36912659

RESUMO

The Streptococcus bovis group (previously group D streptococci) consists of seven distinct species and subspecies. Definitive identification within the group is important, as certain organisms have been associated with gastrointestinal carcinoma, bacteremia, infective endocarditis, meningitis, biliary tract disease, and carcinoma, among others. Definitive identification, however, remains elusive due to limitations and inconsistencies across commonly used identification platforms in the United States. Here, we compared the performance of standard biochemical (Trek Gram-positive identification [GPID] plate, Vitek 2 GPID), sequencing (16S rDNA, sodA) databases (NCBI, RDP, CDC MicrobeNet), and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) platforms (Vitek MS, Bruker Biotyper MS) using a set of eight type strains representing all seven strains within the S. bovis group. Despite the evaluation of contemporary methods, no single platform was able to definitively identify all type strains within the S. bovis group. Vitek MS (85.7%, 7/8) provided the most accurate definitive identifications, followed by sodA sequencing (75%, 6/8). Vitek 2 and Bruker Biotyper RUO platforms performed the next best (62.5%, 5/8). All remaining platforms failed to adequately differentiate type strains within the S. bovis group (range, 0 to 37.5%). Laboratorians and clinicians should be aware of the identification limitations of routine testing algorithms and incorporate reflex testing, when appropriate, to platforms such as Vitek MS and/or sodA sequencing that are more able to definitively identify S. bovis group organisms. Further clinical evaluation was conducted using 65 clinical isolates from three geographically distinct U.S. institutions. Future improvements in identification platforms may reveal new clinical and epidemiological trends for members of the S. bovis group.


Assuntos
Bacteriemia , Endocardite , Streptococcus bovis , Humanos , Streptococcus bovis/genética , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Appl Environ Microbiol ; 89(10): e0047423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823652

RESUMO

As a potent, pleiotropic regulatory protein in Gram-positive bacteria, catabolite control protein A (CcpA) mediates the transcriptional control of carbohydrate metabolism in Streptococcus bovis, a lactate-producing bacterium that plays an essential role in rumen acidosis in dairy cows. Although the rumen uptake of carbohydrates is multi-substrate, the focus of S. bovis research thus far has been on the glucose. With the aid of gene deletion, whole-genome sequencing, and transcriptomics, we have unraveled the role of CcpA in carbohydrate metabolism, on the one hand, and acidosis, on the other, and we show that the S. bovis strain S1 encodes "Carbohydrate-Active Enzymes" and that ccpA deletion slows the organism's growth rate and modulates the organic acid fermentation pathways toward lower lactate, higher formate, and acetate in the maltose and cellobiose. Furthermore, this study revealed the different regulatory functions of the CcpA protein in rumen metabolism and acidosis.IMPORTANCEThis study is important as it illustrates the varying regulatory role of the Streptococcus bovis catabolite control protein A protein in carbohydrate metabolism and the onset of acidosis in dairy cattle.


Assuntos
Acidose , Streptococcus bovis , Bovinos , Animais , Feminino , Streptococcus bovis/genética , Proteínas/metabolismo , Carboidratos , Fermentação , Ácido Láctico/metabolismo , Acidose/microbiologia , Rúmen/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Arch Microbiol ; 204(10): 636, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127476

RESUMO

A total of three Gram-positive, and oxidase and catalase-negative facultative anaerobic non-motile bacteria were isolated from the rumen fluid of cows and goats and these strains were designated CNU_G2T, CNU_77-61, and CNU_G3. They grew at 20-45 °C, pH 6.5-7, and 0-6.5% NaCl (w/v). The G + C contents (%) of the three isolates were 37.9, 37.8 and 37.8, respectively. Phylogenomic analysis indicated that these strains were distinct from other Streptococcus species. The average nucleotide identity between the isolates and the closest strain S. infantarius subsp. infantarius ATCC BAA-102T was 94.0-94.5%, while the digital DNA-DNA hybridization (dDDH) values between the isolates and the aforementioned related strain were 58.2-61.4%, respectively. Fatty acid analysis revealed higher proportions of C16:0 (> 28%) in all three isolates, while the proportion of C18:0 was higher in CNU_G2T (25.8%); however, it was less than 12% in all the representing strains used in the study. The C14:0 composition of strains CNU_77-61 (22.1%) and CNU_G3 (24.1%) was higher than that of type strains of CNU_G2T (8.1%). Based on the morphological, biochemical, and molecular phylogenetic features of the three novel isolates, they represent a novel species of the genus Streptococcus, for which we propose as Streptococcus ruminicola sp. nov. The type strain is CNU_G2T (= KCTC 43308T = GDMCC 1.2785T).


Assuntos
Streptococcus bovis , Animais , Técnicas de Tipagem Bacteriana , Catalase/genética , Bovinos , DNA Bacteriano/genética , Etilnitrosoureia/análogos & derivados , Ácidos Graxos/análise , Nucleotídeos , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Rúmen , Ruminantes , Análise de Sequência de DNA , Cloreto de Sódio/análise , Streptococcus/genética , Streptococcus bovis/genética
4.
Curr Microbiol ; 76(10): 1186-1192, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302724

RESUMO

Bioprocess development is a current requirement to enhance the global production of D-lactic acid. Herein, we report a new bioprocess for D-lactic acid production directly from starch using engineered Lactococcus lactis NZ9000. To modify L. lactis as a D-lactic acid producer, its major endogenous L-lactate dehydrogenase (L-Ldh) gene was replaced with a heterologous D-Ldh gene from Lactobacillus delbrueckii subsp. lactis JCM 1107. The resulting strain AH1 showed a somewhat slower growth rate but similar lactic acid production compared to those of the intact strain when cultivated with glucose as a carbon source. The chemical purity of D-lactic acid produced by L. lactis AH1 was 93.8%, and the enzymatic activities of D- and L-Ldh in AH1 were 1.54 U/mL and 0.05 U/mL, respectively. Next, a heterologous α-amylase gene from Streptococcus bovis NRIC 1535 cloned into an expression vector pNZ8048 was introduced into AH1. The resulting strain AH2 showed an amylolytic activity of 0.26 U/mL in the culture supernatant. Direct production of D-lactic acid from starch as the carbon source was demonstrated using L. lactis AH2, resulting in D-lactic acid production at a concentration of 15.0 g/L after 24 h cultivation. To our knowledge, this is the first report on D-lactic acid production in engineered L. lactis.


Assuntos
Engenharia Genética , Ácido Láctico/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Amido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Glucose/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenases/genética , Lactato Desidrogenases/metabolismo , Lactobacillus delbrueckii/genética , Lactococcus lactis/enzimologia , Lactococcus lactis/crescimento & desenvolvimento , Streptococcus bovis/genética , alfa-Amilases/genética , alfa-Amilases/metabolismo
5.
Int J Mol Sci ; 20(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678042

RESUMO

Streptococcus bovis/Streptococcus equinus complex (SBSEC), a non-enterococcal group D Streptococcus spp. complex, has been described as commensal bacteria in humans and animals, with a fecal carriage rate in humans varying from 5% to over 60%. Among streptococci, SBSEC isolates represent the most antibiotic-resistant species-with variable resistance rates reported for clindamycin, erythromycin, tetracycline, and levofloxacin-and might act as a reservoir of multiple acquired genes. Moreover, reduced susceptibility to penicillin and vancomycin associated with mobile genetic elements have also been detected, although rarely. Since the association of SBSEC bacteremia and colon lesions, infective endocarditis and hepatobiliary diseases has been established, particularly in elderly individuals, an accurate identification of SBSEC isolates to the species and subspecies level, as well as the evaluation of antibiotic resistance, are needed. In this paper, we reviewed the major methods used to identify SBSEC isolates and the antimicrobial resistance rates reported in the scientific literature among SBSEC species.


Assuntos
Infecções Estreptocócicas/microbiologia , Streptococcus bovis/classificação , Streptococcus bovis/isolamento & purificação , Streptococcus/classificação , Streptococcus/isolamento & purificação , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/epidemiologia , Streptococcus/efeitos dos fármacos , Streptococcus bovis/efeitos dos fármacos , Streptococcus bovis/genética
6.
Eur J Clin Microbiol Infect Dis ; 36(2): 387-393, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27796646

RESUMO

Bacteremia with Streptococcus bovis/equinus complex strains is associated with hepatobiliary disease, colorectal lesions (CL), and infective endocarditis (IE). This study addressed the clinical significance of subspecies distinction of previously designated S. bovis blood culture isolates according to the updated nomenclature. During 2002-2013, all blood culture isolates previously designated as S. bovis were recultured and identified using 16S rRNA gene sequencing and MALDI-TOF (Bruker BioTyper and Vitek MS, bioMérieux). Clinical data of patients aged ≥18 years were reviewed. A review of four recent case series was performed as well. Forty blood isolates were identified using 16S rRNA sequencing. Twenty-six bacteremic patients had S. gallolyticus ssp. pasteurianus, six had S. gallolyticus ssp. gallolyticus, two had S. gallolyticus ssp. macedonicus, and six had S. infantarius bacteremia. Species diagnosis using Vitek and bioMérieux MALDI-TOF technology was applicable in 37 and 36 samples, respectively, and was successful in all samples (100 %). Subspecies identification was confirmed in 30 (83 %) samples (as compared with 16S rRNA sequencing detection). IE was diagnosed in 22 (59 %) patients and CL in 8 (20 %) patients. Both complications were associated with all subspecies. Combining our results with those of four recent series resulted in, overall, 320 bacteremic cases, of which 88 (28 %) had CL and 66 (21 %) had IE. All 'bovis/equinus' complex subspecies were associated with CL or IE. From a clinical point of view, species diagnosis using MALDI-TOF MS should suffice to warrant consideration of transesophageal echocardiography and colonoscopy.


Assuntos
Bacteriemia/microbiologia , Streptococcus bovis/classificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sangue/microbiologia , Colite/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Endocardite/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estreptocócicas/microbiologia , Streptococcus bovis/química , Streptococcus bovis/genética , Streptococcus bovis/isolamento & purificação , Adulto Jovem
7.
J Clin Microbiol ; 54(7): 1694-1699, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26912760

RESUMO

The Streptococcus bovis group has undergone significant taxonomic changes over the past 2 decades with the advent of new identification methods with higher discriminatory power. Although the current classification system is not yet embraced by all researchers in the field and debate remains over the performance of molecular techniques for identification to the species level within the group, important disease associations for several members of the group have been clarified. Here, we provide a brief overview of the history of the S. bovis group, an outline of the currently accepted classification scheme, a review of associated clinical syndromes, and a summary of the performance and diagnostic accuracy of currently available identification methods.


Assuntos
Técnicas Bacteriológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Streptococcus bovis/classificação , Streptococcus bovis/isolamento & purificação , Humanos , Streptococcus bovis/genética
8.
Appl Environ Microbiol ; 82(19): 5982-9, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474714

RESUMO

UNLABELLED: When ruminants are fed high-concentrate diets, Streptococcus bovis proliferates rapidly and produces lactate, potentially causing rumen acidosis. Understanding the regulatory mechanisms of the metabolism of this species might help in developing dietary strategies to alleviate rumen acidosis. S. bovis strain S1 was newly isolated from the ruminal fluid of Saanen dairy goats and then used to examine the effects of glucose and starch on bacterial metabolism and gene regulation of the organic acid-producing pathway in cultures at a pH of 6.5. Glucose or starch was added to the culture medium at 1 g/liter, 3 g/liter (close to a normal range in the rumen fluid), or 9 g/liter (excessive level). Lactate was the dominant acid produced during the fermentation, and levels increased with the amount of glucose or starch in a dose-dependent manner (P < 0.001). The production of formate and acetate in the fermentation media fluctuated slightly with the dose but accounted for small fractions of the total acids. The activities of lactate dehydrogenase (LDH) and α-amylase (α-AMY) increased with the starch dose (P < 0.05), but the α-AMY activity did not change with the glucose dose. The relative expression levels of the genes ldh, pfl (encoding pyruvate formate lyase), ccpA (encoding catabolite control protein A), and α-amy were higher at a dose of 9 g/liter than at 1 g/liter (P < 0.05). Expression levels of pfl and α-amy genes were higher at 3 g/liter than at 1 g/liter (P < 0.05). The fructose 1,6-diphosphate (FDP) concentration tended to increase with the glucose and starch concentrations. In addition, the S. bovis S1 isolate fermented glucose much faster than starch. We conclude that the quantities of glucose and soluble starch had a major effect on lactate production due to the transcriptional regulation of metabolic genes. IMPORTANCE: This work used a newly isolated S. bovis strain S1 from the rumen fluid of Saanen goats and examined the effects of glucose and soluble starch on organic acid patterns, enzyme activity, and expression of genes for in vitro fermentation. It was found that lactate was the dominant product from S. bovis strain S1, and the quantities of both glucose and starch in the medium were highly correlated with lactate production and with the corresponding changes in associated enzymes and genes. Therefore, manipulating the metabolic pathway of S. bovis to alter the dietary level of readily fermentable sugar and carbohydrates may be a strategy to alleviate rumen acidosis.


Assuntos
Glucose/metabolismo , Ácido Láctico/metabolismo , Amido/metabolismo , Streptococcus bovis/metabolismo , Animais , Fermentação , Frutosedifosfatos/metabolismo , Cabras/microbiologia , RNA Ribossômico 16S/genética , Streptococcus bovis/genética , Transcrição Gênica
9.
BMC Microbiol ; 16(1): 117, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27329036

RESUMO

BACKGROUND: The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). RESULTS: Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. CONCLUSION: Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and establish the basis to elucidate (zoonotic-) transmission, host specificity, virulence mechanisms and enhanced risk assessment as pathobionts in an overarching One Health approach.


Assuntos
Infecções Estreptocócicas/epidemiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Animais , Aderência Bacteriana , Sequência de Bases , Chaperonina 60/genética , DNA Bacteriano/genética , Suco Gástrico/microbiologia , Genes Essenciais , Humanos , Tipagem de Sequências Multilocus/métodos , NF-kappa B/imunologia , Filogenia , RNA Ribossômico 16S/genética , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/microbiologia , Streptococcus bovis/genética , Streptococcus bovis/isolamento & purificação , Streptococcus gallolyticus/genética , Streptococcus gallolyticus/isolamento & purificação
10.
J Biol Chem ; 289(14): 9823-32, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24526683

RESUMO

Lantibiotic bovicin HJ50 is produced by Streptococcus bovis HJ50 and acts as the extracellular signal to autoregulate its own biosynthesis through BovK/R two-component system. Bovicin HJ50 shows a linear N-terminal and glubolar C-terminal structure, and the sensor histidine kinase BovK contains eight transmembrane segments lacking any extensive surface-exposed sensory domain. The signal recognition mechanism between bovicin HJ50 and BovK is still unknown. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on bovicin HJ50 using a semi-in vitro biosynthesis. Results of the mutants inducing activities indicated that several charged and hydrophobic amino acids in ring B of bovicin HJ50, as well as two glycines were key residues to recognize BovK. Circular dichroism analyses indicated that both glycines contributed to bovicin HJ50 structural changes in the membrane. Biotin-labeled bovicin HJ50 could interact with the N-terminal sensor of BovK, and several charged residues and a conserved hydrophobic region in the N-terminal portion of BovK sensor domain were important for interacting with the signal bovicin HJ50. By combining the results, we suggested a mechanism of bovicin HJ50 recognizing and activating BovK mainly through electrostatic and hydrophobic interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Streptococcus bovis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/genética , Histidina Quinase , Mutação , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Streptococcus bovis/química , Streptococcus bovis/genética
11.
Appl Microbiol Biotechnol ; 99(4): 1655-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25432675

RESUMO

Recombinant yeast strains that display heterologous amylolytic enzymes on their cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system are considered as promising biocatalysts for direct ethanol production from starchy materials. For the effective hydrolysis of these materials, the ratio optimization of multienzyme activity displayed on the cell surface is important. In this study, we have presented a ratio control system of multienzymes displayed on the yeast cell surface by using different GPI-anchoring domains. The novel gene cassettes for the cell-surface display of Streptococcus bovis α-amylase and Rhizopus oryzae glucoamylase were constructed using the Saccharomyces cerevisiae SED1 promoter and two different GPI-anchoring regions derived from Saccharomyces cerevisiae SED1 or SAG1. These gene cassettes were integrated into the Saccharomyces cerevisiae genome in different combinations. Then, the cell-surface α-amylase and glucoamylase activities and ethanol productivity of these recombinant strains were evaluated. The combinations of the gene cassettes of these enzymes affected the ratio of cell-surface α-amylase and glucoamylase activities and ethanol productivity of the recombinant strains. The highest ethanol productivity from raw starch was achieved by the strain harboring one α-amylase gene cassette carrying the SED1-anchoring region and two glucoamylase gene cassettes carrying the SED1-anchoring region (BY-AASS/GASS/GASS). This strain yielded 22.5 ± 0.6 g/L of ethanol from 100 g/L of raw starch in 120 h of fermentation.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Etanol/metabolismo , Glucana 1,4-alfa-Glucosidase/metabolismo , Rhizopus/enzimologia , Saccharomyces cerevisiae/enzimologia , Streptococcus bovis/enzimologia , alfa-Amilases/metabolismo , Clonagem Molecular , Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Mutagênese Insercional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizopus/genética , Saccharomyces cerevisiae/genética , Amido/metabolismo , Streptococcus bovis/genética , alfa-Amilases/genética
12.
Wei Sheng Wu Xue Bao ; 55(1): 50-8, 2015 Jan 04.
Artigo em Zh | MEDLINE | ID: mdl-25958682

RESUMO

OBJECTIVE: To reconstitute the in vitro catalytic activity of the individual dehydratase or cyclase domain of bifunctional bovicin HJ50 synthase BovM, and lay a foundation for the further investigation of catalytic mechanism of class II lantibiotic synthase LanM. METHOD: The truncated proteins of BovM containing the N-terminal dehydratase domain or C-terminal cyclase domain were expressed in E. coli and purified. Substrate BovA, the precursor of bovicin HJ50, was incubated with these truncated BovM proteins in in vitro reaction system. The antimicrobial activity assay and MALDI-TOF MS analysis were used to monitor the dehydratase or cyclase activity of these truncated proteins. Meanwhile, the synergistic activities of both truncated proteins were tested in vivo and in vitro. RESULTS: The N- and C-terminal domains of BovM possessed dehydration and cyclization activity respectively. However, no synergistic activity was detected between these two functional domains. CONCLUSION: The individual functional domains of BovM could execute their corresponding functions independently, but the intactness of BovM was important for its full modification activity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Streptococcus bovis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Bacteriocinas/química , Biocatálise , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Streptococcus bovis/química , Streptococcus bovis/genética
13.
BMC Genomics ; 15: 272, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24713045

RESUMO

BACKGROUND: Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. RESULTS: Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were obtained not only for the dairy S. infantarius CJ18, but also for the blood isolate S. pasteurianus ATCC 43144. CONCLUSIONS: Our whole genome analyses suggest traits of adaptation of S. macedonicus to the nutrient-rich dairy environment. During this process the bacterium gained genes presumably important for this new ecological niche. Finally, S. macedonicus carries a reduced number of putative SBSEC virulence factors, which suggests a diminished pathogenic potential.


Assuntos
Laticínios/microbiologia , Microbiologia de Alimentos , Genoma Bacteriano , Genômica , Streptococcus/genética , Adaptação Biológica/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Metabolismo Energético/genética , Trato Gastrointestinal/microbiologia , Ordem dos Genes , Transferência Genética Horizontal , Genes Bacterianos , Ilhas Genômicas , Humanos , Filogenia , Proteólise , Streptococcus/classificação , Streptococcus/isolamento & purificação , Streptococcus/metabolismo , Streptococcus bovis/genética , Streptococcus bovis/isolamento & purificação , Streptococcus bovis/metabolismo , Fatores de Virulência/genética , Vitaminas/biossíntese
14.
J Bacteriol ; 195(11): 2612-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23543718

RESUMO

Natural genetic transformation is common among many species of the genus Streptococcus, but it has never, or rarely, been reported for the Streptococcus pyogenes and S. bovis groups of species, even though many streptococcal competence genes and the competence regulators SigX, ComR, and ComS are well conserved in both groups. To explore the incidence of competence in the S. bovis group, 25 isolates of S. infantarius and S. macedonicus were surveyed by employing culture in chemically defined media devoid of peptide nutrients and treatment with synthetic candidate pheromone peptides predicted from the sequence of the gene comS. Approximately half of strains examined were transformable, many transforming at high rates comparable to those for the well-characterized streptococcal natural transformation systems. In S. infantarius, nanomolar amounts of the synthetic pheromone LTAWWGL induced robust but transient competence in high-density cultures, but mutation of the ComRS locus abolished transformation. We conclude that at least these two species of the S. bovis group retain a robust system of natural transformation regulated by a ComRS pheromone circuit and the alternative sigma factor SigX and infer that transformation is even more common among the streptococci than has been recognized. The tools presented here will facilitate targeted genetic manipulation in this group of streptococci.


Assuntos
Proteínas de Bactérias/genética , Competência de Transformação por DNA/genética , Feromônios/genética , Regulon/genética , Streptococcus bovis/genética , Streptococcus/genética , Sequência de Aminoácidos , Genoma Bacteriano/genética , Cinética , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/genética , Fenótipo , Feromônios/síntese química , Deleção de Sequência , Transdução de Sinais , Especificidade da Espécie , Transformação Bacteriana
15.
BMC Genomics ; 14: 200, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23521820

RESUMO

BACKGROUND: Streptococcus infantarius subsp. infantarius (Sii) belongs to the Streptococcus bovis/Streptococcus equinus complex associated with several human and animal infections. Sii is a predominant bacterium in spontaneously fermented milk products in Africa. The genome sequence of Sii strain CJ18 was compared with that of other Streptococcus species to identify dairy adaptations including genome decay such as in Streptococcus thermophilus, traits for its competitiveness in spontaneous milk fermentation and to assess potential health risks for consumers. RESULTS: The genome of Sii CJ18 harbors several unique regions in comparison to Sii ATCC BAA-102T, among others an enlarged exo- and capsular polysaccharide operon; Streptococcus thermophilus-associated genes; a region containing metabolic and hypothetical genes mostly unique to CJ18 and the dairy isolate Streptococcus gallolyticus subsp. macedonicus; and a second oligopeptide transport operon. Dairy adaptations in CJ18 are reflected by a high percentage of pseudogenes (4.9%) representing genome decay which includes the inactivation of the lactose phosphotransferase system (lacIIABC) by multiple transposases integration. The presence of lacS and lacZ genes is the major dairy adaptation affecting lactose metabolism pathways also due to the disruption of lacIIABC.We constructed mutant strains of lacS, lacZ and lacIIABC and analyzed the resulting strains of CJ18 to confirm the redirection of lactose metabolism via LacS and LacZ.Natural competence genes are conserved in both Sii strains, but CJ18 contains a lower number of CRISPR spacers which indicates a reduced defense capability against alien DNA. No classical streptococcal virulence factors were detected in both Sii strains apart from those involved in adhesion which should be considered niche factors. Sii-specific virulence factors are not described. Several Sii-specific regions encoding uncharacterized proteins provide new leads for virulence analyses and investigation of the unclear association of dairy and clinical Sii with human diseases. CONCLUSIONS: The genome of the African dairy isolate Sii CJ18 clearly differs from the human isolate ATCC BAA-102T. CJ18 possesses a high natural competence predisposition likely explaining the enlarged genome. Metabolic adaptations to the dairy environment are evident and especially lactose uptake corresponds to S. thermophilus. Genome decay is not as advanced as in S. thermophilus (10-19%) possibly due to a shorter history in dairy fermentations.


Assuntos
Laticínios/microbiologia , Genoma Bacteriano/genética , Leite/microbiologia , Streptococcus/genética , Animais , Aderência Bacteriana/fisiologia , Camelus , Fermentação , Humanos , Óperon Lac , Lactose/metabolismo , Filogenia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus/crescimento & desenvolvimento , Streptococcus/metabolismo , Streptococcus bovis/genética , Fatores de Virulência/genética
16.
Infection ; 41(2): 329-37, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22886774

RESUMO

BACKGROUND: The nomenclature of Streptococcus bovis has changed. The study aims were to examine and compare the clinical characteristics and outcomes of infections based on the new taxonomy and the genetic relatedness of strains. METHODS: Bacteremic cases from 2004 to 2010 at Assaf Harofeh Medical Center were reviewed. VITEK 2 later confirmed with polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was used for subspecies identification. VITEK 2 later confirmed with Etests was used for minimal inhibitory concentration (MIC) testing. Repetitive extragenic palindromic polymerase chain reaction (rep-PCR) was used to determine the genetic relatedness of strains. RESULTS: Twenty-four bacteremia cases were included. The median age of patients was 81 years (range 1 day to 91 years), two were neonates, three were pregnant, and 18 were elderly (≥ 65 years of age). The Charlson's combined conditional age-related score was 8.2 ± 2.9, and 11 (58 %) patients were immunosuppressed. There were 13 patients who had S. gallolyticus subsp. pasteurianus, six had S. gallolyticus subsp. gallolyticus, four had S. infantarius subsp. coli, and one had S. infantarius subsp. infantarius. Ten of 19 non-pregnant adult patients had colon adenoma or carcinoma, three had acute biliary disease, and five had endocarditis. Two patients died in the hospital. rep-PCR revealed polyclonality. There were no significant associations between subspecies or genotypes and the various clinical characteristics or outcomes. CONCLUSION: S. bovis bacteremia is a serious disease that affects elderly immunosuppressed individuals. Infection is strongly associated with colon pathology and endocarditis, regardless of the new taxonomy or clone complex. The identification of S. bovis is of paramount importance, and microbiology laboratories should differentiate its processing from that of other S. viridans.


Assuntos
Neoplasias do Colo/microbiologia , Endocardite Bacteriana/microbiologia , Streptococcus bovis/classificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Técnicas de Tipagem Bacteriana , Doenças Biliares/epidemiologia , Doenças Biliares/microbiologia , Doenças Biliares/patologia , Criança , Pré-Escolar , Neoplasias do Colo/epidemiologia , Neoplasias do Colo/patologia , Comorbidade , Endocardite Bacteriana/epidemiologia , Endocardite Bacteriana/patologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Lactente , Recém-Nascido , Israel , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Gravidez , Estudos Prospectivos , Streptococcus bovis/efeitos dos fármacos , Streptococcus bovis/genética , Adulto Jovem
17.
Food Microbiol ; 33(1): 124-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23122510

RESUMO

Streptococcus macedonicus ACA-DC 198 was found to produce a second lantibiotic named macedovicin in addition to macedocin. Macedovicin was purified to homogeneity and mass spectrometric analysis identified a peptide of approximately 3.4 kDa. Partial N-terminal sequence analysis and tandem mass spectrometry revealed that macedovicin was identical to bovicin HJ50 and thermophilin 1277 produced by Streptococcus bovis and Streptococcus thermophilus, respectively. Macedovicin inhibits a broad spectrum of lactic acid bacteria, several food spoilage species (e.g. Clostridium spp.) and oral streptococci. We determined the complete biosynthetic gene cluster of macedovicin. Even though the gene clusters of macedovicin, thermophilin 1277 and bovicin HJ50 were almost identical at the nucleotide level, there were important differences in their predicted genes and proteins. Bovicin HJ50-like lantibiotics were also found to be encoded by Streptococcus suis strains SC84 and D12, Enterococcus columbae PLCH2, Clostridium perfringens JGS1721 and several Bacillus strains. All these lantibiotics contained a number of conserved amino acids that may be important for their biosynthesis and activity, while phylogenetic analysis supported their dispersion by horizontal gene transfer. In conclusion, the production of multiple bacteriocins may enhance the bio-protective potential of S. macedonicus during food fermentation.


Assuntos
Bacteriocinas/biossíntese , Streptococcus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Dados de Sequência Molecular , Peso Molecular , Família Multigênica , Filogenia , Alinhamento de Sequência , Streptococcus/classificação , Streptococcus/genética , Streptococcus bovis/classificação , Streptococcus bovis/genética , Streptococcus bovis/metabolismo
18.
Sci Rep ; 13(1): 9110, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277552

RESUMO

Streptococcus bovis/equinus complex (SBSEC) is one of the most important lactic acid-producing rumen bacteria causing subacute ruminal acidosis. Despite the significance of the ruminal bacteria, lytic bacteriophages (phages) capable of infecting SBSEC in the rumen have been rarely characterized. Hence, we describe the biological and genomic characteristics of two lytic phages (designated as vB_SbRt-pBovineB21 and vB_SbRt-pBovineS21) infecting various SBSEC species, including the newly reported S. ruminicola. The isolated SBSEC phages were morphologically similar to Podoviridae and could infect other genera of lactic acid-producing bacteria, including Lactococcus and Lactobacillus. Additionally, they showed high thermal- and pH-stability, and those characteristics induce strong adaptation to the ruminal environment, such as the low pH found in subacute ruminal acidosis. Genome-based phylogeny revealed that both phages were related to Streptococcus phage C1 in the Fischettivirus. However, they had a lower nucleotide similarity and distinct genomic arrangements than phage C1. The phage bacteriolytic activity was evaluated using S. ruminicola, and the phages efficiently inhibited planktonic bacterial growth. Moreover, both phages could prevent bacterial biofilms of various SBSEC strains and other lactic acid-producing bacteria in vitro. Thus, the newly isolated two SBSEC phages were classified as new Fischettivirus members and could be considered as potential biocontrol agents against ruminal SBSEC bacteria and their biofilms.


Assuntos
Bacteriófagos , Streptococcus bovis , Animais , Streptococcus bovis/genética , Ruminantes , Ácido Láctico , República da Coreia
19.
Diagn Microbiol Infect Dis ; 107(3): 116045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598592

RESUMO

OBJECTIVES: To develop an in-house matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) library for improved identification of species and subspecies of the Streptococcus bovis/Streptococcus equinus-complex (SBSEC). METHODS: A total of 236 SBSEC isolates from blood stream infections and culture collections, determined by whole genome sequencing to subspecies level, were grown in brain heart infusion broth. Mass spectra were collected using the Bruker MALDI Biotyper system after ethanol-formic acid extraction. Main spectral profiles from 117 isolates were used to create the "SBSEC-CMRS library." The remaining 119 spectra were used for evaluation of Bruker MALDI Biotyper (MBT) Compass Library Revision K (2022) and the SBSEC-CMRS library. RESULTS: The Bruker library correctly identified species and subspecies in 72 of 119 (61 %) isolates, while the SBSEC-CMRS library identified 116 of 119 (97 %), using a cutoff score of ≥2.0. CONCLUSIONS: The SBSEC-CMRS library showed sufficient diagnostic accuracy, and can be implemented in clinical practice for SBSEC species and subspecies identification.


Assuntos
Streptococcus bovis , Humanos , Streptococcus bovis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Streptococcus/genética
20.
Microbiology (Reading) ; 158(Pt 9): 2353-2362, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22723288

RESUMO

The presence of antibiotic-resistance (AR) genes in foodborne bacteria of enteric origin represents a relevant threat to human health in the case of opportunistic pathogens, which can reach the human gut through the food chain. Streptococcus bovis is a human opportunistic pathogen often associated with infections in immune-compromised or cancer patients, and it can also be detected in the environment, including fermented foods. We have focused on the molecular characterization of a tetracycline (Tet)-resistance gene present in 39 foodborne isolates of S. bovis phenotypically resistant to this drug. The gene was identified as a novel tet(S/M) fusion, encoding a mosaic protein composed of the N-terminal 33 amino acids of Tet(S), in-frame with the Tet(M) coding sequence. Heterologous expression of the mosaic gene was found to confer Tet resistance upon Escherichia coli recipients. Moreover, the tet(S/M) gene was found to be transcriptionally inducible by Tet under the endogenous tet(S) promoter in both S. bovis and E. coli. Nucleotide sequencing of the surrounding genomic region of 16.2 kb revealed large blocks of homology with the genomes of Streptococcus infantarius and Lactococcus lactis. A subregion of about 4 kb containing mosaic tet(S/M) was flanked by two copies of the IS1216 mobile element. PCR amplification with primers directed outwards from the tet(S/M) gene identified the presence of a 4.3 kb circular form corresponding to the intervening chromosomal region between the two IS1216 elements, but lacking a replication origin. The circular element shared extensive overall homology with a region of the multidrug-resistance plasmid pK214 from Lc. lactis, containing tet(S), as well as the IS1216 transposase-containing element and intervening non-coding sequences. Linear reconstruction of the insertion events likely to have occurred within this genomic region, inferred from sequence homology, provides further evidence of the chromosomal rearrangements that drive genomic evolution in complex bacterial communities such as the gut and food microbiota.


Assuntos
Microbiologia de Alimentos , Streptococcus bovis/efeitos dos fármacos , Streptococcus bovis/genética , Resistência a Tetraciclina , Antibacterianos/metabolismo , Cromossomos Bacterianos , Elementos de DNA Transponíveis , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Streptococcus bovis/isolamento & purificação , Tetraciclina/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA