Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.705
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 21(7): 384-397, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242127

RESUMO

Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.


Assuntos
Regulação da Expressão Gênica , Homeostase , Mutação , Neoplasias/genética , Neoplasias/patologia , Telomerase/metabolismo , Telômero/fisiologia , Humanos , Neoplasias/metabolismo
2.
Nat Rev Mol Cell Biol ; 18(3): 175-186, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096526

RESUMO

The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.


Assuntos
Instabilidade Genômica , Neoplasias/genética , Telômero/fisiologia , Cromotripsia , Humanos , Neoplasias/prevenção & controle , Telomerase/genética , Telomerase/metabolismo , Encurtamento do Telômero
3.
Annu Rev Genet ; 53: 239-261, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31487470

RESUMO

Aging is a natural process of organismal decay that underpins the development of myriad diseases and disorders. Extensive efforts have been made to understand the biology of aging and its regulation, but most studies focus solely on the host organism. Considering the pivotal role of the microbiota in host health and metabolism, we propose viewing the host and its microbiota as a single biological entity whose aging phenotype is influenced by the complex interplay between host and bacterial genetics. In this review we present how the microbiota changes as the host ages, but also how the intricate relationship between host and indigenous bacteria impacts organismal aging and life span. In addition, we highlight other microbiota-dependent mechanisms that potentially regulate aging, and present experimental animal models for addressing these questions. Importantly, we propose microbiome dysbiosis as an additional hallmark and biomarker of aging.


Assuntos
Envelhecimento/fisiologia , Microbiota/fisiologia , Animais , Epigênese Genética , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Sistema Imunitário/microbiologia , Inflamação/microbiologia , Absorção Intestinal , Masculino , Proteostase , Telômero/fisiologia
4.
N Engl J Med ; 388(26): 2422-2433, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37140166

RESUMO

BACKGROUND: Telomere shortening is a well-characterized cellular aging mechanism, and short telomere syndromes cause age-related disease. However, whether long telomere length is advantageous is poorly understood. METHODS: We examined the clinical and molecular features of aging and cancer in persons carrying heterozygous loss-of-function mutations in the telomere-related gene POT1 and noncarrier relatives. RESULTS: A total of 17 POT1 mutation carriers and 21 noncarrier relatives were initially included in the study, and a validation cohort of 6 additional mutation carriers was subsequently recruited. A majority of the POT1 mutation carriers with telomere length evaluated (9 of 13) had long telomeres (>99th percentile). POT1 mutation carriers had a range of benign and malignant neoplasms involving epithelial, mesenchymal, and neuronal tissues in addition to B- and T-cell lymphoma and myeloid cancers. Five of 18 POT1 mutation carriers (28%) had T-cell clonality, and 8 of 12 (67%) had clonal hematopoiesis of indeterminate potential. A predisposition to clonal hematopoiesis had an autosomal dominant pattern of inheritance, as well as penetrance that increased with age; somatic DNMT3A and JAK2 hotspot mutations were common. These and other somatic driver mutations probably arose in the first decades of life, and their lineages secondarily accumulated a higher mutation burden characterized by a clocklike signature. Successive generations showed genetic anticipation (i.e., an increasingly early onset of disease). In contrast to noncarrier relatives, who had the typical telomere shortening with age, POT1 mutation carriers maintained telomere length over the course of 2 years. CONCLUSIONS: POT1 mutations associated with long telomere length conferred a predisposition to a familial clonal hematopoiesis syndrome that was associated with a range of benign and malignant solid neoplasms. The risk of these phenotypes was mediated by extended cellular longevity and by the capacity to maintain telomeres over time. (Funded by the National Institutes of Health and others.).


Assuntos
Envelhecimento , Hematopoiese Clonal , Neoplasias , Telômero , Humanos , Envelhecimento/genética , Hematopoiese Clonal/genética , Heterozigoto , Mutação com Perda de Função/genética , Mutação , Neoplasias/genética , Complexo Shelterina/genética , Síndrome , Telômero/genética , Telômero/fisiologia , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/genética
5.
PLoS Genet ; 18(2): e1010040, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130272

RESUMO

During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals.


Assuntos
Pareamento Cromossômico/fisiologia , Cromossomos Sexuais/fisiologia , Telômero/fisiologia , Animais , Macropodidae/genética , Marsupiais/genética , Meiose/genética , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Gambás/genética , Cromossomos Sexuais/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética
6.
Genes Dev ; 31(7): 639-647, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428263

RESUMO

Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans.


Assuntos
Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Telômero/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Comportamento Animal , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Neurônios/citologia , Transmissão Sináptica/genética
7.
Horm Behav ; 165: 105631, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232410

RESUMO

Telomere length (TL) is an important cellular marker of biological aging impacting the brain and heart. However, how it is related to the brain (e.g., cognitive function and neuroanatomic architecture), and how these relationships may vary by sex and reproductive status, is not well established. Here we assessed the association between leukocyte TL and memory circuitry regional brain volumes and memory performance in early midlife, in relation to sex and reproductive status. Participants (N = 198; 95 females, 103 males; ages 45-55) underwent structural MRI and neuropsychological assessments of verbal, associative, and working memory. Overall, shorter TL was associated with smaller white matter volume in the parahippocampal gyrus and dorsolateral prefrontal cortex. In males, shorter TL was associated with worse working memory performance and corresponding smaller white matter volumes in the parahippocampal gyrus, anterior cingulate cortex, and dorsolateral prefrontal cortex. In females, the impact of cellular aging was revealed over the menopausal transition. In postmenopausal females, shorter TL was associated with poor associative memory performance and smaller grey matter volume in the right hippocampus. In contrast, TL was not related to memory performance or grey and white matter volumes in any memory circuitry region in pre/perimenopausal females. Results demonstrated that shorter TL is associated with worse memory function and smaller volume in memory circuitry regions in early midlife, an association that differs by sex and reproductive status. Taken together, TL may serve as an early indicator of sex-dependent brain abnormalities in early midlife.


Assuntos
Envelhecimento , Cognição , Leucócitos , Memória , Menopausa , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Envelhecimento/fisiologia , Leucócitos/fisiologia , Cognição/fisiologia , Menopausa/fisiologia , Memória/fisiologia , Caracteres Sexuais , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Telômero/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Testes Neuropsicológicos
8.
Cell ; 139(6): 1038-40, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005795

RESUMO

The 2009 Nobel Prize in Physiology or Medicine has been awarded to Elizabeth Blackburn, Carol Greider, and Jack Szostak for their contributions to our understanding of how the ends of eukaryotic chromosomes, telomeres, are replicated by a specialized reverse transcriptase, telomerase. I present a personal view of the telomere field, putting the contributions of these three Nobel laureates into historical context.


Assuntos
Prêmio Nobel , Fisiologia/história , Telomerase/fisiologia , Telômero/fisiologia , História do Século XXI
9.
Am J Hum Biol ; 36(9): e24091, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38747360

RESUMO

INTRODUCTION: Telomere length (TL) shortening is associated with increased cellular senescence and functional decline with age. Regular physical activity is posited to safeguard against TL shortening, but there is disagreement on how concurrent psychosocial stress may influence this relationship. The current analysis explored whether psychosocial stress is associated with TL differences in highly physically active individuals. METHODS: TL was measured from capillary dried blood spots collected from Division-I (D-1) and Division-III (D-3) National Collegiate Athletics Association (NCAA) swimmers (N = 28) and non-athlete students from the same schools (N = 15). All participants completed Cohen's Perceived Stress Scale (PSS) and student-athletes completed an additional questionnaire to assess psychosocial factors associated with their lifestyle; The Student Athletes' Motivation towards Sports and Academics Questionnaire (SAMSAQ). Semi-structured interviews further contextualized how student-athletes internalize their stress. RESULTS: There was no significant difference in TL or PSS scores between swimmers and controls. D-1 swimmers reported significantly higher career and student-athlete motivation scores compared to D-3, but non-significantly higher PSS and similar academic motivation scores. Themes from interviews with collegiate swimmers included COVID-19 stress, fear of injury, pressure from academics, expectations to perform, and financial pressures. CONCLUSIONS: These themes may have contributed to higher PSS scores in D-1 swimmers compared to D-3 but did not appear to impact their TL. Given differences in perceived stress, sources of stress, and SAMSAQ scores, further analyses with larger sample sizes are needed to better understand how these factors influence human biology and health while engaged in intense physical activity.


Assuntos
Atletas , Motivação , Estresse Psicológico , Natação , Humanos , Masculino , Feminino , Adulto Jovem , Atletas/psicologia , Atletas/estatística & dados numéricos , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Adolescente , Telômero/fisiologia , Encurtamento do Telômero , Universidades
10.
Eur Child Adolesc Psychiatry ; 33(8): 2803-2812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38246982

RESUMO

Shortened telomere length (TL) has been associated with lower cognitive performance, different neurological diseases in adults, and certain neurodevelopmental disorders in children. However, the evidence about the association between TL and neuropsychological developmental outcomes in children from the general population is scarce. Therefore, this study aimed to explore the association between TL and neuropsychological function in children 4-5 years of age. We included 686 children from the INMA Project, a population-based birth cohort in Spain. Leucocyte TL was determined by quantitative PCR method, and neuropsychological outcomes were measured using the McCarthy Scales of Children's Abilities (MCSA). Multiple linear regression models were used to estimate associations adjusted for potential confounding variables. Main findings showed that a longer TL was associated with a higher mean working memory score (ß = 4.55; 95% CI = 0.39, 8.71). In addition, longer TL was associated with a higher mean global quantitative score (ß = 3.85; 95% CI = -0.19, 7.89), although the association was marginally significant. To our knowledge, this is the first study that shows a positive association between TL and better neuropsychological outcomes in children. Although further research is required to confirm these results, this study supports the hypothesis that TL is essential in protecting and maintaining a child's health, including cognitive functions such as working memory.


Assuntos
Testes Neuropsicológicos , Humanos , Feminino , Masculino , Estudos Transversais , Pré-Escolar , Espanha , Telômero/genética , Telômero/fisiologia , Memória de Curto Prazo/fisiologia , Desenvolvimento Infantil/fisiologia , Coorte de Nascimento , Cognição/fisiologia
11.
RNA ; 27(12): 1441-1458, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34556550

RESUMO

Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.


Assuntos
Processamento Alternativo , Proteínas de Ciclo Celular/metabolismo , Transferases Intramoleculares/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , Ribossomos/metabolismo , Telômero/fisiologia , Proteínas de Ciclo Celular/genética , Disceratose Congênita , Humanos , Transferases Intramoleculares/genética , Proteínas Nucleares/genética
12.
Psychol Med ; 53(13): 6171-6182, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36457292

RESUMO

BACKGROUND: Although maternal stressor exposure has been associated with shorter telomere length (TL) in offspring, this literature is based largely on White samples. Furthermore, timing of maternal stressors has rarely been examined. Here, we examined how maternal stressors occurring during adolescence, pregnancy, and across the lifespan related to child TL in Black and White mothers. METHOD: Mothers (112 Black; 110 White; Mage = 39) and their youngest offspring (n = 222; Mage = 8) were part of a larger prospective cohort study, wherein mothers reported their stressors during adolescence (assessed twice during adolescence for the past year), pregnancy (assessed in midlife for most recent pregnancy), and across their lifespan (assessed in midlife). Mother and child provided saliva for TL measurement. Multiple linear regression models examined the interaction of maternal stressor exposure and race in relation to child TL, controlling for maternal TL and child gender and age. Race-stratified analyses were also conducted. RESULTS: Neither maternal adolescence nor lifespan stressors interacted with race in relation to child TL. In contrast, greater maternal pregnancy stressors were associated with shorter child TL, but this effect was present for children of White but not Black mothers. Moreover, this effect was significant for financial but not social pregnancy stressors. Race-stratified models revealed that greater financial pregnancy stressors predicted shorter telomeres in offspring of White, but not Black mothers. CONCLUSIONS: Race and maternal stressors interact and are related to biological aging across generations, but these effects are specific to certain races, stressors, and exposure time periods.


Assuntos
Mães , Encurtamento do Telômero , Adolescente , Adulto , Criança , Feminino , Humanos , Gravidez , Exposição Materna , Mães/psicologia , Estudos Prospectivos , Telômero/fisiologia , Encurtamento do Telômero/fisiologia , População Branca/psicologia , Relação entre Gerações/etnologia , Negro ou Afro-Americano/psicologia , Adulto Jovem , Pessoa de Meia-Idade
13.
Hum Mol Genet ; 29(19): 3197-3210, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916696

RESUMO

The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Fibroblastos/patologia , Doenças da Imunodeficiência Primária/patologia , Telômero/fisiologia , Fatores de Transcrição/metabolismo , Animais , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Face/patologia , Fibroblastos/metabolismo , Humanos , Camundongos , Doenças da Imunodeficiência Primária/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica , DNA Metiltransferase 3B
14.
Genome Res ; 29(5): 737-749, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872351

RESUMO

Telomere erosion, dysfunction, and fusion can lead to a state of cellular crisis characterized by large-scale genome instability. We investigated the impact of a telomere-driven crisis on the structural integrity of the genome by undertaking whole-genome sequence analyses of clonal populations of cells that had escaped crisis. Quantification of large-scale structural variants revealed patterns of rearrangement consistent with chromothripsis but formed in the absence of functional nonhomologous end-joining pathways. Rearrangements frequently consisted of short fragments with complex mutational patterns, with a repair topology that deviated from randomness showing preferential repair to local regions or exchange between specific loci. We find evidence of telomere involvement with an enrichment of fold-back inversions demarcating clusters of rearrangements. Our data suggest that chromothriptic rearrangements caused by a telomere crisis arise via a replicative repair process involving template switching.


Assuntos
Cromotripsia , Instabilidade Genômica , Telômero/genética , Inversão Cromossômica/genética , Variações do Número de Cópias de DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Variação Estrutural do Genoma/genética , Células HCT116 , Humanos , Mutação , Neoplasias/genética , Origem de Replicação/genética , Telômero/metabolismo , Telômero/fisiologia , Sequenciamento Completo do Genoma
15.
Proc Natl Acad Sci U S A ; 116(12): 5659-5664, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842278

RESUMO

Cohesin is a key determinant of chromosome architecture due to its DNA binding and tethering ability. Cohesin binds near centromeres and chromosome arms and also close to telomeres, but its role near telomeres remains elusive. In budding yeast, transcription within 20 kb of telomeres is repressed, in part by the histone-modifying silent information regulator (SIR) complex. However, extensive subtelomeric repressed domains lie outside the SIR-binding region, but the mechanism of silencing in these regions remains poorly understood. Here, we report a role for cohesin in subtelomeric silencing that extends even beyond the zone of SIR binding. Clusters of subtelomeric genes were preferentially derepressed in a cohesin mutant, whereas SIR binding was unaltered. Genetic interactions with known telomere silencing factors indicate that cohesin operates independent of the SIR-mediated pathway for telomeric silencing. Mutant cells exhibited Mpk1-dependent Sir3 hyperphosphorylation that contributes to subtelomeric derepression to a limited extent. Compaction of subtelomeric domains and tethering to the nuclear envelope were impaired in mutant cells. Our findings provide evidence for a unique SIR-independent mechanism of subtelomeric repression mediated by cohesin.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Telômero/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Histonas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Coesinas
16.
Annu Rev Genet ; 47: 275-306, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24016189

RESUMO

Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin in which a histone-binding protein complex [the SIR (silent information regulator) complex] represses gene transcription in a sequence-independent manner by spreading along nucleosomes, much like heterochromatin in higher eukaryotes. Recent advances in the biochemistry and structural biology of the SIR-chromatin system bring us much closer to a molecular understanding of yeast silent chromatin. Simultaneously, genome-wide approaches have shed light on the biological importance of this form of epigenetic repression. Here, we integrate genetic, structural, and cell biological data into an updated overview of yeast silent chromatin assembly.


Assuntos
Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Acetilação , Cromatina/genética , DNA Fúngico/genética , Inativação Gênica , Genes Fúngicos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/fisiologia , Modelos Genéticos , Nucleossomos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Repressoras/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Telômero/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica
17.
J Autoimmun ; 123: 102699, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265700

RESUMO

Telomeres are repetitive DNA sequences located at the ends of linear chromosomes that preserve the integrity and stability of the genome. Telomere dysfunctions due to short telomeres or altered telomere structures can ultimately lead to replicative cellular senescence and chromosomal instability, both mechanisms being hallmarks of ageing. Chronic inflammation, oxidative stress and finally telomere length (TL) dynamics have been shown to be involved in various age-related non-communicable diseases (NCDs). Immune-mediated inflammatory diseases (IMIDs), including affections such as inflammatory bowel disease, psoriasis, rheumatoid arthritis, spondyloarthritis and uveitis belong to this group of age-related NCDs. Although in recent years, we have witnessed the emergence of studies in the literature linking these IMIDs to TL dynamics, the causality between these diseases and telomere attrition is still unclear and controversial. In this review, we provide an overview of available studies on telomere dynamics and discuss the utility of TL measurements in immune-mediated inflammatory diseases.


Assuntos
Inflamação/etiologia , Telômero/fisiologia , Artrite Reumatoide/etiologia , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/etiologia , Psoríase/etiologia , Espondilartrite/etiologia , Uveíte/etiologia
18.
Hepatology ; 72(4): 1412-1429, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32516515

RESUMO

BACKGROUND AND AIMS: Telomere attrition is a major risk factor for end-stage liver disease. Due to a lack of adequate models and intrinsic difficulties in studying telomerase in physiologically relevant cells, the molecular mechanisms responsible for liver disease in patients with telomere syndromes remain elusive. To circumvent that, we used genome editing to generate isogenic human embryonic stem cells (hESCs) harboring clinically relevant mutations in telomerase and subjected them to an in vitro, stage-specific hepatocyte differentiation protocol that resembles hepatocyte development in vivo. APPROACH AND RESULTS: Using this platform, we observed that while telomerase is highly expressed in hESCs, it is quickly silenced, specifically due to telomerase reverse transcriptase component (TERT) down-regulation, immediately after endoderm differentiation and completely absent in in vitro-derived hepatocytes, similar to what is observed in human primary hepatocytes. While endoderm derivation is not impacted by telomere shortening, progressive telomere dysfunction impaired hepatic endoderm formation. Consequently, hepatocyte derivation, as measured by expression of specific hepatic markers as well by albumin expression and secretion, is severely compromised in telomerase mutant cells with short telomeres. Interestingly, this phenotype was not caused by cell death induction or senescence. Rather, telomere shortening prevents the up-regulation and activation of human hepatocyte nuclear factor 4 alpha (HNF4α) in a p53-dependent manner. Both reactivation of telomerase and silencing of p53 rescued hepatocyte formation in telomerase mutants. Likewise, the conditional expression (doxycycline-controlled) of HNF4α, even in cells that retained short telomeres, accrued DNA damage, and exhibited p53 stabilization, successfully restored hepatocyte formation from hESCS. CONCLUSIONS: Our data show that telomere dysfunction acts as a major regulator of HNF4α during hepatocyte development, pointing to a target in the treatment of liver disease in telomere-syndrome patients.


Assuntos
Fator 4 Nuclear de Hepatócito/fisiologia , Hepatócitos/fisiologia , Telômero/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias , Hepatócitos/citologia , Humanos , Telomerase/genética
19.
Respir Res ; 22(1): 316, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937547

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an age-related condition that has been associated with early telomere attrition; the clinical implications of telomere shortening in COPD are not well known. In this study we aimed to determine the relationship of the epigenetic regulation of telomeric length in peripheral blood with the risk of exacerbations and hospitalization in patients with COPD. METHODS: Blood DNA methylation profiles were obtained from 292 patients with COPD enrolled in the placebo arm of the Macrolide Azithromycin to Prevent Rapid Worsening of Symptoms Associated with Chronic Obstructive Pulmonary Disease (MACRO) Study and who were followed for 1-year. We calculated telomere length based on DNA methylation markers (DNAmTL) and related this biomarker to the risk of exacerbation and hospitalization and health status (St. George Respiratory Questionnaire [SGRQ]) score over time using a Cox proportional hazards model. We also used linear models to investigate the associations of DNAmTL with the rates of exacerbation and hospitalization (adjusted for chronological age, lung function, race, sex, smoking, body mass index and cell composition). RESULTS: Participants with short DNAmTL demonstrated increased risk of exacerbation (P = 0.02) and hospitalization (P = 0.03) compared to those with longer DNAmTL. DNAmTL age acceleration was associated with higher rates of exacerbation (P = 1.35 × 10-04) and hospitalization (P = 5.21 × 10-03) and poor health status (lower SGRQ scores) independent of chronological age (P = 0.03). CONCLUSION: Telomeric age based on blood DNA methylation is associated with COPD exacerbation and hospitalization and thus a promising biomarker for poor outcomes in COPD.


Assuntos
Azitromicina/uso terapêutico , Hospitalização/tendências , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Telômero/fisiologia , Adulto , Idoso , Antibacterianos/uso terapêutico , Biomarcadores/metabolismo , Metilação de DNA , Progressão da Doença , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Qualidade de Vida , Estudos Retrospectivos , Inquéritos e Questionários , Fatores de Tempo , Estados Unidos/epidemiologia
20.
FASEB J ; 34(1): 386-398, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914653

RESUMO

To date, there is no direct evidence of telomerase activity in adult lung epithelial cells, but typical culture conditions only support cell proliferation for 30-40 population doublings (PD), a point at which telomeres remain relatively long. Here we report that in in vitro low stress culture conditions consisting of a fibroblast feeder layer, rho-associated coiled coil protein kinase inhibitor (ROCKi), and low oxygen (2%), normal human bronchial epithelial basal progenitor cells (HBECs) divide for over 200 PD without engaging a telomere maintenance mechanism (almost four times the "Hayflick limit"). HBECs exhibit critically short telomeres at 200 PD and the population of cells start to undergo replicative senescence. Subcloning these late passage cells to clonal density, to mimic lung injury in vivo, selects for rare subsets of HBECs that activate low levels of telomerase activity to maintain short telomeres. CRISPR/Cas9 knockout of human telomerase reverse transcriptase or treatment with the telomerase-mediated telomere targeting agent 6-thio-2'deoxyguanosine abrogates colony growth in these late passage cultures (>200 PD) but not in early passage cultures (<200 PD). To our knowledge, this is the first study to report such long-term growth of HBECs without a telomere maintenance mechanism. This report also provides direct evidence of telomerase activation in HBECs near senescence when telomeres are critically short. This novel cell culture system provides an experimental model to understand how telomerase is regulated in normal adult tissues.


Assuntos
Brônquios/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Senescência Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Telômero/fisiologia , Adulto , Brônquios/fisiologia , Divisão Celular , Células Cultivadas , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Telomerase/metabolismo , Encurtamento do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA