Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81.745
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 630(8015): 91-95, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778107

RESUMO

The strength of materials depends on the rate at which they are tested, as defects, for example dislocations, that move in response to applied strains have intrinsic kinetic limitations1-4. As the deformation strain rate increases, more strengthening mechanisms become active and increase the strength4-7. However, the regime in which this transition happens has been difficult to access with traditional micromechanical strength measurements. Here, with microballistic impact testing at strain rates greater than 106 s-1, and without shock conflation, we show that the strength of copper increases by about 30% for a 157 °C increase in temperature, an effect also observed in pure titanium and gold. This effect is counterintuitive, as almost all materials soften when heated under normal conditions. This anomalous thermal strengthening across several pure metals is the result of a change in the controlling deformation mechanism from thermally activated strengthening to ballistic transport of dislocations, which experience drag through phonon interactions1,8-10. These results point to a pathway to better model and predict materials properties under various extreme strain rate conditions, from high-speed manufacturing operations11 to hypersonic transport12.


Assuntos
Cobre , Ouro , Temperatura , Titânio , Ouro/química , Titânio/química , Estresse Mecânico , Teste de Materiais , Fônons , Metais/química , Temperatura Alta
2.
Nature ; 604(7905): 273-279, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418634

RESUMO

Metals with nanocrystalline grains have ultrahigh strengths approaching two gigapascals. However, such extreme grain-boundary strengthening results in the loss of almost all tensile ductility, even when the metal has a face-centred-cubic structure-the most ductile of all crystal structures1-3. Here we demonstrate that nanocrystalline nickel-cobalt solid solutions, although still a face-centred-cubic single phase, show tensile strengths of about 2.3 gigapascals with a respectable ductility of about 16 per cent elongation to failure. This unusual combination of tensile strength and ductility is achieved by compositional undulation in a highly concentrated solid solution. The undulation renders the stacking fault energy and the lattice strains spatially varying over length scales in the range of one to ten nanometres, such that the motion of dislocations is thus significantly affected. The motion of dislocations becomes sluggish, promoting their interaction, interlocking and accumulation, despite the severely limited space inside the nanocrystalline grains. As a result, the flow stress is increased, and the dislocation storage is promoted at the same time, which increases the strain hardening and hence the ductility. Meanwhile, the segment detrapping along the dislocation line entails a small activation volume and hence an increased strain-rate sensitivity, which also stabilizes the tensile flow. As such, an undulating landscape resisting dislocation propagation provides a strengthening mechanism that preserves tensile ductility at high flow stresses.


Assuntos
Cobalto , Metais , Cobalto/química , Teste de Materiais , Metais/química , Resistência à Tração
3.
Methods ; 225: 74-88, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493931

RESUMO

Computational modeling and simulation (CM&S) is a key tool in medical device design, development, and regulatory approval. For example, finite element analysis (FEA) is widely used to understand the mechanical integrity and durability of orthopaedic implants. The ASME V&V 40 standard and supporting FDA guidance provide a framework for establishing model credibility, enabling deeper reliance on CM&S throughout the total product lifecycle. Examples of how to apply the principles outlined in the ASME V&V 40 standard are important to facilitating greater adoption by the medical device community, but few published examples are available that demonstrate best practices. Therefore, this paper outlines an end-to-end (E2E) example of the ASME V&V 40 standard applied to an orthopaedic implant. The objective of this study was to illustrate how to establish the credibility of a computational model intended for use as part of regulatory evaluation. In particular, this study focused on whether a design change to a spinal pedicle screw construct (specifically, the addition of a cannulation to an existing non-cannulated pedicle screw) would compromise the rod-screw construct mechanical performance. This question of interest (?OI) was addressed by establishing model credibility requirements according to the ASME V&V 40 standard. Experimental testing to support model validation was performed using spinal rods and non-cannulated pedicle screw constructs made with medical grade titanium (Ti-6Al-4V ELI). FEA replicating the experimental tests was performed by three independent modelers and validated through comparisons of common mechanical properties such as stiffness and yield force. The validated model was then used to simulate F1717 compression-bending testing on the new cannulated pedicle screw design to answer the ?OI, without performing any additional experimental testing. This E2E example provides a realistic scenario for the application of the ASME V&V 40 standard to orthopedic medical device applications.


Assuntos
Análise de Elementos Finitos , Parafusos Pediculares , Parafusos Pediculares/normas , Humanos , Simulação por Computador , Teste de Materiais/métodos , Teste de Materiais/normas , Titânio/química , Força Compressiva
4.
Small ; 20(37): e2401060, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38726765

RESUMO

3D-printed bioceramic scaffolds offer great potential for bone tissue engineering (BTE) but their inherent brittleness and reduced mechanical properties at high porosities can easily result in catastrophic fractures. Herein, this study presents a hierarchical hydrogel impregnation strategy, incorporating poly(vinyl alcohol) (PVA) hydrogel into the macro- and micropores of bioceramic scaffolds and synergistically reinforcing it via freeze-casting assisted solution substitution (FASS) in a tannic acid (TA)-glycerol solution. By effectively mitigating catastrophic brittle failures, the hydrogel-impregnated scaffolds showcase three- and 100-fold enhancement in mechanical energy absorption under compression (5.05 MJ m-3) and three-point bending (3.82 MJ m-3), respectively. The reinforcement mechanisms are further investigated by experimental and simulation analyses, revealing a multi-scale synergy of fracture and fragmentation resistance through macro and micro-scale fiber bridging, and nano and molecular-scale hydrogel reinforcement. Also, the scaffolds acquire additional antibacterial and drug-loading capabilities from the hydrogel phase while maintaining favorable cell biocompatibility. Therefore, this study demonstrates a facile yet effective approach for preparing brittle-failure-free bioceramic scaffolds with enhanced biological functionalities, showcasing immense potential for BTE applications.


Assuntos
Cerâmica , Impressão Tridimensional , Álcool de Polivinil/química , Antibacterianos/química , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Teste de Materiais
5.
Biopolymers ; 115(5): e23600, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38808736

RESUMO

Distal ulna locking bone plates (DLBPs) are commonly employed in the treatment of distal ulna fractures. However, commercially available metallic bone plates experience stress shielding and lack corrosion resistance. Poly lactic acid (PLA) is highly favored biopolymer due to its biocompatible and bioabsorbable nature with human tissues. The use of additive layer manufacturing (ALM) is gaining attention for creating customized implants with intricate structures tailored to patient autonomy. ALM-based PLA bone plates must provide high resistance against impact and torsional forces, necessitating the adjustment of printing process parameters. This study focuses on examining the influence of key printing parameters, on the impact strength and torque-withstanding capability of DLBPs. Experimental results, along with microscopic images, reveal that an increase in infill density (IF) and wall thickness imparts strong resistance to layers against crack propagation under impact and torsional loads. On the contrary, an increase in layer height and printing speed leads to delamination and early fracture of layers during impact and torsional testing. IF significantly contributes to improving the impact strength and torque-withstanding capability of DLBPs by 70.53% and 80.65%, respectively. The study highlights the potential of the ALM technique in developing DLBPs with sufficient mechanical strength for biomedical applications.


Assuntos
Placas Ósseas , Teste de Materiais , Biopolímeros/química , Poliésteres/química , Materiais Biocompatíveis/química , Humanos , Estresse Mecânico , Impressão Tridimensional , Torque , Ortopedia/métodos
6.
Biopolymers ; 115(3): e23572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491802

RESUMO

As a natural and biocompatible material with high strength and flexibility, spider silk is frequently used in biomedical studies. In this study, the availability of Argiope bruennichi spider silk as a surgical suture material was investigated. The effects of spider silk-based and commercial sutures, with and without Aloe vera coating, on wound healing were evaluated by a rat dorsal skin flap model, postoperatively (7th and 14th days). Biochemical, hematological, histological, immunohistochemical, small angle x-ray scattering (SAXS) analyses and mechanical tests were performed. A. bruennichi silk did not show any cytotoxic effect on the L929 cell line according to MTT and LDH assays, in vitro. The silk materials did not cause any allergic reaction, infection, or systemic effect in rats according to hematological and biochemical analyses. A. bruennichi spider silk group showed a similar healing response to commercial sutures. SAXS analysis showed that the 14th-day applications of A. bruennichi spider silk and A. vera coated commercial suture groups have comparable structural results with control group. In conclusion, A. bruennichi spider silk is biocompatible in line with the parameters examined and shows a healing response similar to the commercial sutures commonly used in the skin.


Assuntos
Materiais Biocompatíveis , Seda , Aranhas , Cicatrização , Animais , Seda/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Aranhas/química , Ratos , Camundongos , Linhagem Celular , Cicatrização/efeitos dos fármacos , Masculino , Difração de Raios X , Teste de Materiais , Suturas , Espalhamento a Baixo Ângulo , Pele/efeitos dos fármacos , Ratos Wistar
7.
Biomacromolecules ; 25(4): 2312-2322, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456765

RESUMO

Local delivery of pain medication can be a beneficial strategy to address pain management after joint replacement, as it can decrease systemic opioid usage, leading to less side and long-term effects. In this study, we used ultrahigh molecular weight polyethylene (UHMWPE), commonly employed as a bearing material for joint implants, to deliver a wide set of analgesics and the nonsteroidal anti-inflammatory drug tolfenamic acid. We blended the drugs with UHMWPE and processed the blend by compression molding and sterilization by low-dose gamma irradiation. We studied the chemical stability of the eluted drugs, drug elution, tensile properties, and wear resistance of the polymer blends before and after sterilization. The incorporation of bupivacaine hydrochloride and tolfenamic acid in UHMWPE resulted in either single- or dual-drug loaded materials that can be sterilized by gamma irradiation. These compositions were found to be promising for the development of clinically relevant drug-eluting implants for joint replacement.


Assuntos
Artroplastia de Substituição , ortoaminobenzoatos , Teste de Materiais , Polietilenos/química , Analgésicos , Anti-Inflamatórios não Esteroides
8.
Biomacromolecules ; 25(6): 3475-3485, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741285

RESUMO

Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as reinforcing units for alginate fibers. Acidity increases the flexibility of the helix and contributes to enhanced extendibility. Ethanol is responsible for formation of a stiff ß-sheet, which enhances the modulus and strength. The structurally engineered SA assembly exhibits robust mechanical compatibility, and thus reinforced alginate fibers possess an improved tensile strength of 2.1 times, a prolonged elongation of 1.5 times, and an enhanced toughness of 3.0 times compared with SA fibers without reinforcement. The reinforcement through self-assembly provides an understanding of strengthening and toughening mechanism based on secondary structures. Due to a similar modulus with bones, reinforced alginate fibers exhibit good efficacy in accelerating bone regeneration in vivo.


Assuntos
Alginatos , Regeneração Óssea , Resistência à Tração , Alginatos/química , Regeneração Óssea/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Ácido Glucurônico/química , Teste de Materiais , Ácidos Hexurônicos/química , Alicerces Teciduais/química
9.
Soft Matter ; 20(7): 1573-1582, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38270546

RESUMO

To avoid the potential toxicity of monomer residues in synthetic polymer based organohydrogels, natural polysaccharide-based organohydrogels are expected to be used in multi-functional wearable sensory systems, but most of them have unsatisfactory stiffness, strength and fracture toughness. Herein, a cooking and soaking strategy is proposed to prepare novel natural polysaccharide-based organohydrogels possessing outstanding stiffness, strength, toughness, freezing resistance, heating resistance and long-term durability. The agar organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 2.26 MPa and a fracture toughness of 14.8 kJ m-2, the κ-carrageenan organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 4.34 MPa and a fracture toughness of 11.0 kJ m-2, and the gellan organohydrogel exhibits a fracture stress of 1.2 MPa, a Young's modulus of 2.81 MPa and a fracture toughness of 5.4 kJ m-2. Furthermore, the agar organohydrogels are assembled into multi-functional wearable sensors by introducing NaCl as a conducting agent exhibiting responses to strain (5-150%), temperature (-15 to 60 °C) and humidity (11-97%), and possessing exceptional multi-sensory capabilities. Therefore, the developed strategy has shown a new pathway towards strengthening polysaccharide-based organohydrogels with potential for application in wearable sensory systems.


Assuntos
Polissacarídeos , Teste de Materiais , Umidade , Temperatura , Ágar
10.
Soft Matter ; 20(26): 5095-5104, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888165

RESUMO

The mechanical properties of soft gels hold significant relevance in biomedicine and biomaterial design, including the development of tissue engineering constructs and bioequivalents. It is important to adequately characterize the gel's mechanical properties since they play a role both in the overall structural properties of the construct and the physiological responses of cells. The question remains which approach for the mechanical characterization is most suitable for specific biomaterials. Our investigation is centered on the comparison of three types of gels and four distinct mechanical testing techniques: shear rheology, compression, microindentation, and nanoindentation by atomic force microscopy. While analyzing an elastic homogeneous synthetic hydrogel (a polyacrylamide gel), we observed close mechanical results across the different testing techniques. However, our findings revealed more distinct outcomes when assessing a highly viscoelastic gel (Ecoflex) and a heterogeneous biopolymer hydrogel (enzymatically crosslinked gelatin). To ensure precise data interpretation, we introduced correction factors to account for the boundary conditions inherent in many of the testing methods. The results of this study underscore the critical significance of considering both the temporal and spatial scales in mechanical measurements of biomaterials. Furthermore, they encourage the employment of a combination of diverse testing techniques, particularly in the characterization of heterogeneous viscoelastic materials such as biological samples. The obtained results will contribute to the refinement of mechanical testing protocols and advance the development of soft gels for tissue engineering.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Teste de Materiais , Materiais Biocompatíveis/química , Hidrogéis/química , Elasticidade , Reologia , Viscosidade , Resinas Acrílicas/química , Gelatina/química , Engenharia Tecidual
11.
Soft Matter ; 20(33): 6655-6667, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39109674

RESUMO

In this study, porous networks were efficiently prepared by crosslinking hydrophilic poly(2-isopropenyl-2-oxazoline) (PiPOx) with dicarboxylic polyesters (HOOC-PLA-COOH or HOOC-PCL-COOH) in the presence of sodium chloride as a water-soluble porogen. Importantly, by using a relatively simple synthetic protocol, the resulting spongy materials were freely formed to the desired size and shape while maintaining stable dimensions. According to the SEM data, the porous 3D structure can be altered by the pore dimensions, which are dependent on the porogen crystal size. After porosity characterization, the mechanical properties were also evaluated via uniaxial compression and tensile tests. The porous networks formed hydrogels with a high water absorption capacity. Finally, after showing cytocompatibility by the MTT assay, we also demonstrated the applicability of the porous hydrogels as scaffolds for cell cultivation. The presented results suggest that this type of hydrogels is a promising material for tissue engineering.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Poliésteres , Alicerces Teciduais , Hidrogéis/química , Hidrogéis/farmacologia , Porosidade , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual , Oxazóis/química , Oxazóis/farmacologia , Humanos , Teste de Materiais , Animais
12.
Wound Repair Regen ; 32(3): 229-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38534045

RESUMO

The capability to produce suture material using three-dimensional (3D) printing technology may have applications in remote health facilities where rapid restocking of supplies is not an option. This is a feasibility study evaluating the usability of 3D-printed sutures in the repair of a laceration wound when compared with standard suture material. The 3D-printed suture material was manufactured using a fused deposition modelling 3D printer and nylon 3D printing filament. Study participants were tasked with performing laceration repairs on the pigs' feet, first with 3-0 WeGo nylon suture material, followed by the 3D-printed nylon suture material. Twenty-six participants were enrolled in the study. Survey data demonstrated statistical significance with how well the 3D suture material performed with knot tying, 8.9 versus 7.5 (p = 0.0018). Statistical significance was observed in the 3D-printed suture's ultimate tensile strength when compared to the 3-0 Novafil suture (274.8 vs. 199.8 MPa, p = 0.0096). The 3D-printed suture also demonstrated statistical significance in ultimate extension when compared to commercial 3-0 WeGo nylon suture (49% vs. 37%, p = 0.0215). This study was successful in using 3D printing technology to manufacture suture material and provided insight into its usability when compared to standard suture material.


Assuntos
Estudos de Viabilidade , Impressão Tridimensional , Técnicas de Sutura , Suturas , Resistência à Tração , Animais , Suínos , Lacerações/cirurgia , Teste de Materiais , Nylons , Cicatrização , Humanos , Modelos Animais de Doenças
13.
Eur J Vasc Endovasc Surg ; 68(4): 521-528, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38906369

RESUMO

OBJECTIVE: Iliofemoral venous obstructive disease can result in significant, potentially debilitating symptoms that can negatively affect quality of life. Unlike arterial disease, patients with deep venous disease have a significantly lower median age, therefore the need for long term stent patency becomes a matter of decades rather than years. Furthermore, iliofemoral lesions frequently require stent placement across the inguinal ligament. Such stents are subject to dynamic stress from leg movement and associated concerns for device fatigue, resulting in stent fracture. The aim of this study was to describe an in vitro 50 year stent fatigue test method designed to assess durability against dynamic stress induced device fracture. METHODS: Through literature review, cadaver studies, and computer modelling, the most challenging loading was confirmed to be hip flexion across the inguinal ligament. This occurs when the patient adjusts between a seated and standing position. Sit to stand hip flexion at the inguinal ligament was effectively simulated on the bench in this in vitro experimental study. RESULTS: When tested under challenge parameters, hip flexion was reliably found to cause fractures in non-venous nitinol stents. However, a dedicated self expanding nitinol venous stent, engineered for improved durability, underwent up to 50 years of simulated loading on the bench with 15% (3/20) of stents experiencing fractures at 50 years, compared with fractures in 35% (14/40) of non-venous stents tested to 1.4 years; no statistical testing was performed as durations do not match and the objective was to demonstrate the test method. CONCLUSION: The presented fatigue test method is a suitable approach for evaluating the durability of stents intended for venous use. Venous stents demonstrated superior fatigue resistance compared with non-venous stents via in vitro hip flexion testing.


Assuntos
Ligas , Teste de Materiais , Falha de Prótese , Stents , Humanos , Stents/efeitos adversos , Desenho de Prótese , Estresse Mecânico , Fatores de Tempo , Procedimentos Endovasculares/instrumentação , Procedimentos Endovasculares/efeitos adversos , Veia Ilíaca/fisiopatologia , Veia Ilíaca/cirurgia , Veia Femoral , Análise de Falha de Equipamento
14.
Nanotechnology ; 35(46)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39116890

RESUMO

The translation of silver-based nanotechnology 'from bench to bedside' requires a deep understanding of the molecular aspects of its biological action, which remains controversial at low concentrations and non-spherical morphologies. Here, we present a hemocompatibility approach based on the effect of the distinctive electronic charge distribution in silver nanoparticles (nanosilver) on blood components. According to spectroscopic, volumetric, microscopic, dynamic light scattering measurements, pro-coagulant activity tests, and cellular inspection, we determine that at extremely low nanosilver concentrations (0.125-2.5µg ml-1), there is a relevant interaction effect on the serum albumin and red blood cells (RBCs). This explanation has its origin in the surface charge distribution of nanosilver particles and their electron-mediated energy transfer mechanism. Prism-shaped nanoparticles, with anisotropic charge distributions, act at the surface level, generating a compaction of the native protein molecule. In contrast, the spherical nanosilver particle, by exhibiting isotropic surface charge, generates a polar environment comparable to the solvent. Both morphologies induce aggregation at NPs/bovine serum albumin ≈ 0.044 molar ratio values without altering the coagulation cascade tests; however, the spherical-shaped nanosilver exerts a negative impact on RBCs. Overall, our results suggest that the electron distributions of nanosilver particles, even at extremely low concentrations, are a critical factor influencing the molecular structure of blood proteins' and RBCs' membranes. Isotropic forms of nanosilver should be considered with caution, as they are not always the least harmful.


Assuntos
Eritrócitos , Nanopartículas Metálicas , Soroalbumina Bovina , Prata , Prata/química , Nanopartículas Metálicas/química , Eritrócitos/metabolismo , Eritrócitos/química , Humanos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Animais , Bovinos , Coagulação Sanguínea/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/química , Teste de Materiais
15.
Macromol Rapid Commun ; 45(4): e2300579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984501

RESUMO

Aiming at the problems of long reaction time and the risk of explosion polymerization of acrylate resin, a small amount of ferrocene (Fc) is added to the existing dibenzoyl peroxide (BPO)/N,N-dimethylaniline (DMA) initiators, and the compound redox initiators (BPO/DMA/ (Fc)) are proposed for acrylate resin polymerization at room temperature. The effect of the content of Fc in the resin on the reaction efficiency and the molding quality of products is researched, and the initiation mechanism of the compound redox initiators is analyzed. It is found that with the addition of Fc, the reaction time of the resin can be shortened by 68% at maximum, the heat release temperature of the resin can be reduced by 40% at maximum, the molecular weight of the reaction products can be increased by 74% at maximum, the tensile and bending properties of the resin castings are increased by 23% and 35% at maximum, respectively, and the bending strength and bending modulus are increased by 57% and 27% at maximum, respectively. The compound redox initiators proposed in this paper can improve the molding efficiency and quality of the product, lay a foundation for the application of acrylic resin in the field of pultrusion molding, perfusion molding, and other in situ molding of thermoplastic composites.


Assuntos
Acrilatos , Resinas Acrílicas , Polimerização , Temperatura , Oxirredução , Teste de Materiais
16.
Macromol Rapid Commun ; 45(16): e2400228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837476

RESUMO

To enhance the low-temperature toughness and resistance of the engineering plastic polyamide PA12, this study introduces novel PA12/MVQ@POE-g-MAH ternary composites using a two-step process and dynamic curing. Analytical results indicate that incorporating MVQ@POE-g-MAH into the PA12 matrix markedly enhances its toughness and heat resistance. As the MVQ@POE-g-MAH content increases, the elongation at break of PA12 composites significantly expands from 52.83% to 204.69%, and the notch impact strength escalates from 8.69 to 74.34 kJ m-2. In addition, the brittleness temperature of PA12 decreases from -59.5 to -67.0 °C. Experimental findings confirm that POE-g-MAH is dispersed at the interface between MVQ and PA12, creating an encapsulated structure of MVQ@POE-g-MAH. This enhancement significantly broadens the potential applications of PA12 by improving its toughness, and resistance to both low and high temperatures, as well as impact endurance.


Assuntos
Nylons , Nylons/química , Temperatura , Temperatura Baixa , Teste de Materiais , Estrutura Molecular
17.
Macromol Rapid Commun ; 45(19): e2400337, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018478

RESUMO

Designing heat-resistant thermosets with excellent comprehensive performance has been a long-standing challenge. Co-curing of various high-performance thermosets is an effective strategy, however, the traditional trial-and-error experiments have long research cycles for discovering new materials. Herein, a two-step machine learning (ML) assisted approach is proposed to design heat-resistant co-cured resins composed of polyimide (PI) and silicon-containing arylacetylene (PSA), that is, poly(silicon-alkyne imide) (PSI). First, two ML prediction models are established to evaluate the processability of PIs and their compatibility with PSA. Then, another two ML models are developed to predict the thermal decomposition temperature and flexural strength of the co-cured PSI resins. The optimal molecular structures and compositions of PSI resins are high-throughput screened. The screened PSI resins are experimentally verified to exhibit enhanced heat resistance, toughness, and processability. The research framework established in this work can be generalized to the rational design of other advanced multi-component polymeric materials.


Assuntos
Temperatura Alta , Aprendizado de Máquina , Polímeros/química , Teste de Materiais , Silício/química , Estrutura Molecular
18.
Macromol Rapid Commun ; 45(20): e2400380, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39012274

RESUMO

Polylactic acid (PLA), derived from renewable resources, has the advantages of rigidity, thermoplasticity, biocompatibility, and biodegradability, and is widely used in many fields such as packaging, agriculture, and biomedicine. The excellent processability properties allow for melt processing treatments such as extrusion, injection molding, blow molding, and thermoforming in the preparation of PLA-based materials. However, the low toughness and poor thermal stability of PLA limit its practical applications. Compared with pure PLA, conditions such as processing technology, filler, and crystallinity affect the mechanical properties of PLA-based materials, including tensile strength, Young's modulus, and elongation at break. This review systematically summarizes various technical parameters for melt processing of PLA-based materials and further discusses the mechanical properties of PLA homopolymers, filler-reinforced PLA-based composites, PLA-based multiphase composites, and reactive composite strategies for PLA-based composites.


Assuntos
Poliésteres , Poliésteres/química , Resistência à Tração , Materiais Biocompatíveis/química , Teste de Materiais , Polímeros/química
19.
Macromol Rapid Commun ; 45(11): e2400036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453138

RESUMO

Preparation of materials that possess highly strong and tough properties simultaneously is a great challenge. Thermosetting resins as a type of widely used polymeric materials without synergistic strength and toughness limit their applications in some special fields. In this report, an effective strategy to prepare thermosetting resins with synergistic strength and toughness, is presented. In this method, the soft and rigid microspheres with dynamic hemiaminal bonds are fabricated first, followed by hot-pressing to crosslink at the interfaces. Specifically, the rigid or soft microspheres are prepared via precipitation polymerization. After hot-pressing, the resulting rigid-soft blending materials exhibit superior strength and toughness, simultaneously. As compared with the precursor rigid or soft materials, the toughness of the rigid-soft blending films (RSBFs) is improved to 240% and 2100%, respectively, while the strength is comparable to the rigid precursor. As compared with the traditional crushing, blending, and hot-pressing of rigid or soft materials to get the nonuniform materials, the strength and toughness of the RSBFs are improved to 168% and 255%, respectively. This approach holds significant promise for the fabrication of polymer thermosets with a unique combination of strength and toughness.


Assuntos
Polimerização , Resinas Sintéticas/química , Microesferas , Polímeros/química , Temperatura , Teste de Materiais , Propriedades de Superfície , Tamanho da Partícula
20.
Macromol Rapid Commun ; 45(4): e2300563, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985954

RESUMO

This study aims at evaluating and developing an environmental-friendly and sulfur-free cured ethylene propylene diene monomer (EPDM) composites. Silane grafted EPDM (SiEPDM) composites incorporated with silica is prepared via a solvent-free, one-step reactive mixing process. The silane grafting and silica filler bonding are characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The mechanical properties of the developed composites are examined. The fracture morphology is observed using an environmental scanning electron microscopy. The rheology and thermomechanical properties are evaluated by using a rotational rheometer and dynamic mechanical analyzer. Notably, a robust bonding between silica and the grafted silane is established, yielding a crosslinking network within the composite structure. This phenomenon is substantiated by the observed gel efficiency and rheology behavior. Consequently, a pronounced augmentation of up to 75% in tensile strength and 29% in tear strength are observed in the optimized SiEPDM-silica composites, distinguishing them from their EPDM-silica counterparts. The introduction of paraffin oil contributes to enhanced processability; however, it is concomitant with a reduction in gel efficiency and associated mechanical properties. Furthermore, subsequent UV weathering test unveils that the SiEPDM-silica composites exhibit the highest levels of residual tensile strength and modulus, indicative of their exceptional UV stability.


Assuntos
Elastômeros , Metacrilatos , Silanos , Metacrilatos/química , Silanos/química , Resinas Compostas/química , Dióxido de Silício/química , Maleabilidade , Teste de Materiais , Etilenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA