Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 593(7859): 460-464, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953398

RESUMO

Disulfide bonds between cysteine residues are important post-translational modifications in proteins that have critical roles for protein structure and stability, as redox-active catalytic groups in enzymes or allosteric redox switches that govern protein function1-4. In addition to forming disulfide bridges, cysteine residues are susceptible to oxidation by reactive oxygen species, and are thus central not only to the scavenging of these but also to cellular signalling and communication in biological as well as pathological contexts5,6. Oxidized cysteine species are highly reactive and may form covalent conjugates with, for example, tyrosines in the active sites of some redox enzymes7,8. However, to our knowledge, regulatory switches with covalent crosslinks other than disulfides have not previously been demonstrated. Here we report the discovery of a covalent crosslink between a cysteine and a lysine residue with a NOS bridge that serves as an allosteric redox switch in the transaldolase enzyme of Neisseria gonorrhoeae, the pathogen that causes gonorrhoea. X-ray structure analysis of the protein in the oxidized and reduced state reveals a loaded-spring mechanism that involves a structural relaxation upon redox activation, which is propagated from the allosteric redox switch at the protein surface to the active site in the protein interior. This relaxation leads to a reconfiguration of key catalytic residues and elicits an increase in enzymatic activity of several orders of magnitude. The redox switch is highly conserved in related transaldolases from other members of the Neisseriaceae; for example, it is present in the transaldolase of Neisseria meningitides (a pathogen that is the primary cause of meningitis and septicaemia in children). We surveyed the Protein Data Bank and found that the NOS bridge exists in diverse protein families across all domains of life (including Homo sapiens) and that it is often located at catalytic or regulatory hotspots. Our findings will inform strategies for the design of proteins and peptides, as well as the development of new classes of drugs and antibodies that target the lysine-cysteine redox switch9,10.


Assuntos
Cisteína/metabolismo , Lisina/metabolismo , Nitrogênio/química , Oxigênio/química , Enxofre/química , Transaldolase/química , Transaldolase/metabolismo , Regulação Alostérica , Animais , Sequência Conservada , Bases de Dados de Proteínas , Ativação Enzimática , Humanos , Modelos Moleculares , Neisseria gonorrhoeae/enzimologia , Oxirredução
2.
PLoS Pathog ; 18(9): e1010864, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121870

RESUMO

Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.


Assuntos
Via de Pentose Fosfato , Toxoplasma , Antiparasitários , Carbono/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Isomerases/metabolismo , NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Fosfatos/metabolismo , Racemases e Epimerases/metabolismo , Ribose , Toxoplasma/metabolismo , Transaldolase/metabolismo
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1496-1505, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528662

RESUMO

In atherosclerosis, macrophage-derived foam cell formation is considered to be a hallmark of the pathological process; this occurs via the uptake of modified lipoproteins. In the present study, we aim to determine the role of transaldolase in foam cell formation and atherogenesis and reveal the mechanisms underlying its role. Bone marrow-derived macrophages (BMDMs) isolated from mice successfully form foam cells after treatment with oxidized low-density lipoprotein (80 µg/mL). Elevated transaldolase levels in the foam cell model are assessed by quantitative polymerase chain reaction and western blot analysis. Transaldolase overexpression and knockdown in BMDMs are achieved via plasmid transfection and small interfering RNA technology, respectively. We find that transaldolase overexpression effectively attenuates, whereas transaldolase knockdown accelerates, macrophage-derived foam cell formation through the inhibition or activation of cholesterol uptake mediated by the scavenger receptor cluster of differentiation 36 (CD36) in a p38 mitogen-activated protein kinase (MAPK) signaling-dependent manner. Transaldolase-mediated glutathione (GSH) homeostasis is identified as the upstream regulator of p38 MAPK-mediated CD36-dependent cholesterol uptake in BMDMs. Transaldolase upregulates GSH production, thereby suppressing p38 activity and reducing the CD36 level, ultimately preventing foam cell formation and atherosclerosis. Thus, our findings indicate that the transaldolase-GSH-p38-CD36 axis may represent a promising therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Camundongos , Animais , Transaldolase/metabolismo , Transaldolase/farmacologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/metabolismo , Glutationa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Colesterol/metabolismo
4.
Chembiochem ; 23(2): e202100577, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34699683

RESUMO

Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well-characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of ß-hydroxy-α-amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, an l-threonine transaldolase, to achieve selective milligram-scale synthesis of a diverse array of non-standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re-entry into the catalytic cycle. ObiH-catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of ß-hydroxy-α-amino acids possessing broad functional-group diversity. Furthermore, we demonstrated that ObiH-generated ß-hydroxy-α-amino acids could be modified through additional transformations to access important motifs, such as ß-chloro-α-amino acids and substituted α-keto acids.


Assuntos
Aminoácidos/biossíntese , Treonina/metabolismo , Transaldolase/metabolismo , Aminoácidos/química , Catálise , Cromatografia Líquida/métodos , Cristalografia por Raios X , Espectrometria de Massas/métodos , Estrutura Molecular , Estereoisomerismo
5.
Genes Cells ; 26(5): 269-281, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33621395

RESUMO

In many animals, progression of developmental stages is temporally controlled by steroid hormones. In Drosophila, the level of ecdysone titer oscillates and developmental stage transitions, such as larval molting and metamorphosis, are induced at each of ecdysone peaks. Ecdysone titer also peaks at the stage of mid-embryogenesis and the embryonic ecdysone is necessary for morphogenesis of several organs, although the regulatory mechanisms of embryonic organogenesis dependent on ecdysone signaling are still open questions. In this study, we find that absence or interruption of embryonic ecdysone signaling caused multiple defects in the tracheal system, including decrease in luminal protein deposition, uneven dilation of the dorsal trunk and loss of terminal branches. We also reveal that an ecdysone-inducible gene polished rice (pri) is essential for tip cell fate decision in dorsal branches. As over-expression of pri can restore the defects caused by disturbance of ecdysone biosynthesis, pri functions as one of the major mediators of embryonic ecdysone signal in tracheogenesis. These results demonstrate that ecdysone and its downstream target pri play essential roles in tracheal development by modulating cell fate decision.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Embrião não Mamífero/metabolismo , Organogênese , Transaldolase/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Mutação/genética , Fenótipo , Traqueia/citologia , Traqueia/embriologia , Traqueia/metabolismo , Transaldolase/genética
6.
J Biol Chem ; 295(7): 1867-1878, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31871051

RESUMO

The genomes of most cellulolytic clostridia do not contain genes annotated as transaldolase. Therefore, for assimilating pentose sugars or for generating C5 precursors (such as ribose) during growth on other (non-C5) substrates, they must possess a pathway that connects pentose metabolism with the rest of metabolism. Here we provide evidence that for this connection cellulolytic clostridia rely on the sedoheptulose 1,7-bisphosphate (SBP) pathway, using pyrophosphate-dependent phosphofructokinase (PPi-PFK) instead of transaldolase. In this reversible pathway, PFK converts sedoheptulose 7-phosphate (S7P) to SBP, after which fructose-bisphosphate aldolase cleaves SBP into dihydroxyacetone phosphate and erythrose 4-phosphate. We show that PPi-PFKs of Clostridium thermosuccinogenes and Clostridium thermocellum indeed can convert S7P to SBP, and have similar affinities for S7P and the canonical substrate fructose 6-phosphate (F6P). By contrast, (ATP-dependent) PfkA of Escherichia coli, which does rely on transaldolase, had a very poor affinity for S7P. This indicates that the PPi-PFK of cellulolytic clostridia has evolved the use of S7P. We further show that C. thermosuccinogenes contains a significant SBP pool, an unusual metabolite that is elevated during growth on xylose, demonstrating its relevance for pentose assimilation. Last, we demonstrate that a second PFK of C. thermosuccinogenes that operates with ATP and GTP exhibits unusual kinetics toward F6P, as it appears to have an extremely high degree of cooperative binding, resulting in a virtual on/off switch for substrate concentrations near its K½ value. In summary, our results confirm the existence of an SBP pathway for pentose assimilation in cellulolytic clostridia.


Assuntos
Clostridiales/genética , Clostridium thermocellum/genética , Frutose-Bifosfato Aldolase/genética , Via de Pentose Fosfato/genética , Fosfofrutoquinase-1/genética , Clostridiales/enzimologia , Clostridium thermocellum/enzimologia , Fosfato de Di-Hidroxiacetona/genética , Fosfato de Di-Hidroxiacetona/metabolismo , Escherichia coli/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos/metabolismo , Cinética , Pentoses/biossíntese , Pentoses/metabolismo , Fosfofrutoquinase-1/metabolismo , Fosfotransferases/metabolismo , Ribose/biossíntese , Ribose/metabolismo , Fosfatos Açúcares/metabolismo , Transaldolase/genética , Transaldolase/metabolismo , Xilose/biossíntese , Xilose/metabolismo
7.
Breast Cancer Res Treat ; 189(2): 317-331, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34282517

RESUMO

PURPOSE: Identification of effective biomarkers for the benefit of endocrine treatment and understanding the molecular pathways that contribute to the development of resistance are of crucial importance to the management of luminal breast cancer. The amino acid transporter SLC1A5 has emerging importance as a prognostic marker and potential therapeutic target in various types of cancer. This study aims to investigate its role in luminal breast cancer as a potential predictive marker for endocrine treatment. METHODS: SLC1A5 expression was assessed at the transcriptomic and proteomic levels in large, well-characterized cohorts of luminal breast cancer. The sensitivity to endocrine therapy after SLC1A5 knockdown was investigated in vitro, using MCF7 and MDA-MB-175 cell lines. Bioinformatic analyses were performed to study the interacting networks of SLC1A5 and to identify a key co-expressed gene with SLC1A5. RESULTS: Here, we showed that patients with tumors that highly expressed SLC1A5 associated with a high risk of relapse after endocrine treatment. In vitro, depletion of SLC1A5 increases the sensitivity of luminal breast cancer cells to tamoxifen. TALDO1 was identified as key co-expressed gene with SLC1A5, and in vitro knockdown of SLC1A5 showed reduction in TALDO1 expression. Indeed, TALDO1 was associated with poor clinical outcomes in patients who were subject to endocrine therapy. CONCLUSION: These findings suggest that metabolic alterations, particularly the interaction between the key amino acid transporter SLC1A5 and metabolic enzyme TALDO1, could affect the sensitivity of endocrine therapy. This study demonstrated the prognostic value of both SLC1A5 and TALDO1 as biomarkers in luminal breast cancer.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Neoplasias da Mama , Antígenos de Histocompatibilidade Menor/genética , Receptores de Estrogênio , Transaldolase/genética , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia , Proteômica , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Tamoxifeno/uso terapêutico
8.
Appl Microbiol Biotechnol ; 105(9): 3507-3520, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33900425

RESUMO

The introduction of ß-hydroxy-α-amino acids (ßHAAs) into organic molecules has received considerable attention as these molecules have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of asymmetric synthesis of ßHAAs, stereoselective synthesis to control the two chiral centres at Cα and Cß positions is still challenging, with poor atomic economy and multi protection and deprotection steps. These syntheses are often operated under harsh conditions. Therefore, a biotransformation approach using biocatalysts is needed to selectively introduce these two chiral centres into structurally diverse molecules. Yet, there are few ways that enable one-step synthesis of ßHAAs. One is to extend the substrate scope of the existing enzyme inventory. Threonine aldolases have been explored to produce ßHAAs. However, the enzymes have poor controlled installation at Cß position, often resulting in a mixture of diastereoisomers which are difficult to be separated. In this respect, L-threonine transaldolases (LTTAs) offer an excellent potential as the enzymes often provide controlled stereochemistry at Cα and Cß positions. Another is to mine LTTA homologues and engineer the enzymes using directed evolution with the aim of finding engineered biocatalysts to accept broad substrates with enhanced conversion and stereoselectivity. Here, we review the development of LTTAs that incorporate various aldehyde acceptors to generate structurally diverse ßHAAs and highlight areas for future developments. KEY POINTS: • The general mechanism of the transaldolation reaction catalysed by LTTAs • Recent advances in LTTAs from different biosynthetic pathways • Applications of LTTAs as biocatalysts for production of ßHAAs.


Assuntos
Treonina , Transaldolase , Aminoácidos , Glicina Hidroximetiltransferase , Estereoisomerismo
9.
Pathol Int ; 71(7): 463-470, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33848380

RESUMO

Upper tract urothelial carcinoma (UTUC) is a rare tumor with an incidence that varies greatly between Eastern and Western countries. Transaldolase 1 (TALDO1) is a rate-limiting enzyme of the pentose phosphate pathway. In humans, aberrant TALDO1 activity has been implicated in various autoimmune diseases and malignancies; however, the function of TALDO1 in UTUC has not been previously investigated. Here we evaluated the clinical significance of TALDO1 expression in 115 paraffin-embedded tumor samples from patients with UTUC using immunohistochemistry. Our results demonstrated that there was an association between high TALDO1 expression and advanced stage (P = 0.011), tumor size (P = 0.005), tumor location (P = 0.047), distant metastases (P = 0.023), local recurrence (P = 0.002), and cancer death (P = 0.003). Using univariate and multivariate analyses, we found that chemotherapy was an independent factor for bladder recurrence-free survival. Late stage (III/IV) and high TALDO1 expression were independent prognostic factors for progression-free and cancer-specific survival. In summary, increased TALDO1 expression in UTUC was significantly correlated with late stage, tumor size, tumor location, distant metastases, local recurrence, and cancer death. Therefore, high TALDO1 expression could be a predictor of poor survival in patients with UTUC. Further studies are necessary to investigate the role of TALDO1 in UTUC development.


Assuntos
Prognóstico , Transaldolase/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma de Células de Transição/patologia , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estudos Retrospectivos
10.
Biotechnol Lett ; 43(7): 1277-1287, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33797654

RESUMO

OBJECTIVE: Erythritol (1,2,3,4-butanetetrol) is a 4-carbon sugar alcohol that occurs in nature as a metabolite or storage compound. In this study, a multiple gene integration strategy was employed to enhance erythritol production in Y. lipolytica. RESULTS: The effects on the production of erythritol in Y. lipolytica of seven key genes involved in the erythritol synthesis pathway were evaluated individually, among which transketolase (TKL1) and transaldolase (TAL1) showed important roles in enhancing erythritol production. The combined overexpression of four genes (GUT1, TPI1, TKL1, TAL1) and disruption of the EYD1 gene (encoding erythritol dehydrogenase), resulted in produce approximately 40 g/L erythritol production from glycerol. Further enhanced erythritol synthesis was obtained by overexpressing the RKI1 gene (encoding ribose 5-phosphate isomerase) and the AMPD gene (encoding AMP deaminase), indicating for the first time that these two genes are also related to the enhancement of erythritol production in Y. lipolytica. CONCLUSIONS: A combined gene overexpression strategy was developed to efficiently improve the production of erythritol in Y. lipolytica, suggesting a great capacity and promising potential of this non-conventional yeast in converting glycerol into erythritol.


Assuntos
Eritritol/biossíntese , Proteínas Fúngicas/genética , Engenharia Metabólica/métodos , Yarrowia/crescimento & desenvolvimento , AMP Desaminase/genética , Aldose-Cetose Isomerases/genética , Técnicas de Cultura Celular por Lotes , Glicerol/metabolismo , Transaldolase/genética , Transcetolase/genética , Yarrowia/genética , Yarrowia/metabolismo
11.
Plant Mol Biol ; 104(1-2): 39-53, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564178

RESUMO

Plants are exposed to various environmental cues that lead to reactive oxygen species (ROS) accumulation. ROS production and detoxification are tightly regulated to maintain balance. Although studies of glucose (Glc) are always accompanied by ROS in animals, the role of Glc in respect of ROS in plants is unclear. We isolated gsm2 (Glc-hypersensitive mutant 2), a mutant with a notably chlorotic-cotyledon phenotype. The chloroplast-localized GSM2 was characterized as a transaldolase in the pentose phosphate pathway. With 3% Glc treatment, fewer or no thylakoids were observed in gsm2 cotyledon chloroplasts than in wild-type cotyledon chloroplasts, suggesting that GSM2 is required for chloroplast protection under stress. gsm2 also showed evaluated accumulation of ROS with 3% Glc treatment and was more sensitive to exogenous H2O2 than the wild type. Gene expression analysis of the antioxidant enzymes in gsm2 revealed that chloroplast damage to gsm2 cotyledons results from the accumulation of excessive ROS in response to Glc. Moreover, the addition of diphenyleneiodonium chloride or phenylalanine can rescue Glc-induced chlorosis in gsm2 cotyledons. This work suggests that GSM2 functions to maintain ROS balance in response to Glc during early seedling growth and sheds light on the relationship between Glc, the pentose phosphate pathway and ROS.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , RNA Helicases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transaldolase/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Glucuronidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/fisiologia , Fenótipo , RNA Helicases/genética , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Plântula/genética , Plântula/metabolismo , Transaldolase/genética
12.
Biochem Biophys Res Commun ; 533(4): 1109-1114, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33036753

RESUMO

Sulfoquinovose (6-deoxy-6-sulfoglucose, SQ) is a component of sulfolipids found in the photosynthetic membranes of plants and other photosynthetic organisms, and is one of the most abundant organosulfur compounds in nature. Microbial degradation of SQ, termed sulfoglycolysis, constitutes an important component of the biogeochemical sulfur cycle. Two sulfoglycolysis pathways have been reported, with one resembling the Embden-Meyerhof-Parnas (sulfo-EMP) pathway, and the other resembling the Entner-Doudoroff (sulfo-ED) pathway. Here we report a third sulfoglycolysis pathway in the bacterium Bacillus megaterium DSM 1804, in which sulfosugar cleavage is catalyzed by the transaldolase SqvA, which converts 6-deoxy-6-sulfofructose and glyceraldehyde 3-phosphate into fructose -6-phosphate and (S)-sulfolactaldehyde. Variations of this transaldolase-dependent sulfoglycolysis (sulfo-TAL) pathway are present in diverse bacteria, and add to the diversity of mechanisms for the degradation of this abundant organosulfur compound.


Assuntos
Bacillus megaterium/metabolismo , Glicólise , Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Transaldolase/metabolismo , Bacillus megaterium/enzimologia , Cromatografia Líquida , Biologia Computacional , Expressão Gênica , Glicólise/genética , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Família Multigênica , Filogenia
13.
Mol Genet Metab ; 131(1-2): 147-154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32828637

RESUMO

Inborn errors of metabolism (IEM) involving the non-oxidative pentose phosphate pathway (PPP) include the two relatively rare conditions, transketolase deficiency and transaldolase deficiency, both of which can be difficult to diagnosis given their non-specific clinical presentations. Current biochemical testing approaches require an index of suspicion to consider targeted urine polyol testing. To determine whether a broad-spectrum biochemical test could accurately identify a specific metabolic pattern defining IEMs of the non-oxidative PPP, we employed the use of clinical metabolomic profiling as an unbiased novel approach to diagnosis. Subjects with molecularly confirmed IEMs of the PPP were included in this study. Targeted quantitative analysis of polyols in urine and plasma samples was accomplished with chromatography and mass spectrometry. Semi-quantitative unbiased metabolomic analysis of urine and plasma samples was achieved by assessing small molecules via liquid chromatography and high-resolution mass spectrometry. Results from untargeted and targeted analyses were then compared and analyzed for diagnostic acuity. Two siblings with transketolase (TKT) deficiency and three unrelated individuals with transaldolase (TALDO) deficiency were identified for inclusion in the study. For both IEMs, targeted polyol testing and untargeted metabolomic testing on urine and/or plasma samples identified typical perturbations of the respective disorder. Additionally, untargeted metabolomic testing revealed elevations in other PPP metabolites not typically measured with targeted polyol testing, including ribonate, ribose, and erythronate for TKT deficiency and ribonate, erythronate, and sedoheptulose 7-phosphate in TALDO deficiency. Non-PPP alternations were also noted involving tryptophan, purine, and pyrimidine metabolism for both TKT and TALDO deficient patients. Targeted polyol testing and untargeted metabolomic testing methods were both able to identify specific biochemical patterns indicative of TKT and TALDO deficiency in both plasma and urine samples. In addition, untargeted metabolomics was able to identify novel biomarkers, thereby expanding the current knowledge of both conditions and providing further insight into potential underlying pathophysiological mechanisms. Furthermore, untargeted metabolomic testing offers the advantage of having a single effective biochemical screening test for identification of rare IEMs, like TKT and TALDO deficiencies, that may otherwise go undiagnosed due to their generally non-specific clinical presentations.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo/genética , Transaldolase/deficiência , Transaldolase/genética , Transcetolase/genética , Adulto , Biomarcadores/sangue , Erros Inatos do Metabolismo dos Carboidratos/sangue , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Humanos , Lactente , Masculino , Espectrometria de Massas , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Metabolômica , Via de Pentose Fosfato/genética , Transaldolase/sangue , Transaldolase/metabolismo , Transcetolase/sangue , Transcetolase/deficiência , Adulto Jovem
14.
BMC Microbiol ; 20(1): 63, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32204692

RESUMO

BACKGROUND: The Gram-positive facultative methylotrophic bacterium Bacillus methanolicus uses the sedoheptulose-1,7-bisphosphatase (SBPase) variant of the ribulose monophosphate (RuMP) cycle for growth on the C1 carbon source methanol. Previous genome sequencing of the physiologically different B. methanolicus wild-type strains MGA3 and PB1 has unraveled all putative RuMP cycle genes and later, several of the RuMP cycle enzymes of MGA3 have been biochemically characterized. In this study, the focus was on the characterization of the transaldolase (Ta) and its possible role in the RuMP cycle in B. methanolicus. RESULTS: The Ta genes of B. methanolicus MGA3 and PB1 were recombinantly expressed in Escherichia coli, and the gene products were purified and characterized. The PB1 Ta protein was found to be active as a homodimer with a molecular weight of 54 kDa and displayed KM of 0.74 mM and Vmax of 16.3 U/mg using Fructose-6 phosphate as the substrate. In contrast, the MGA3 Ta gene, which encodes a truncated Ta protein lacking 80 amino acids at the N-terminus, showed no Ta activity. Seven different mutant genes expressing various full-length MGA3 Ta proteins were constructed and all gene products displayed Ta activities. Moreover, MGA3 cells displayed Ta activities similar as PB1 cells in crude extracts. CONCLUSIONS: While it is well established that B. methanolicus can use the SBPase variant of the RuMP cycle this study indicates that B. methanolicus possesses Ta activity and may also operate the Ta variant of the RuMP.


Assuntos
Bacillus/enzimologia , Mutação , Transaldolase/química , Transaldolase/metabolismo , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Peso Molecular , Pentoses/metabolismo , Fosfatos/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transaldolase/genética
15.
J Inherit Metab Dis ; 43(3): 496-506, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31769880

RESUMO

Transaldolase (TAL) is an enzyme in the pentose phosphate pathway (PPP) that generates NADPH for protection against oxidative stress. While deficiency of other PPP enzymes, such as transketolase (TKT), are incompatible with mammalian cell survival, mice lacking TAL are viable and develop progressive liver disease attributed to oxidative stress. Mice with homozygous or heterozygous TAL deficiency are predisposed to cirrhosis, hepatocellular carcinoma (HCC) and acetaminophen (APAP)-induced liver failure. Both mice and humans with complete TAL deficiency accumulate sedoheptulose 7-phosphate (S7P). Previous human studies relied on screening patients with S7P accumulation, thus excluding potentially pathogenic haploinsufficiency. Of note, mice with TAL haploinsufficiency are also predisposed to HCC and APAP-induced liver failure which are preventable with oral N-acetylcysteine (NAC) administration. Based on TALDO1 DNA sequencing, we detected functional TAL deficiency due to novel, heterozygous variations in two of 94 healthy adults and four of 27 subjects with APAP-induced liver failure (P = .022). The functional consequences of these variations were individually validated by site-directed mutagenesis of normal cDNA and loss of activity by recombinant enzyme. All four patients with TAL haplo-insufficiency with APAP-induced liver failure were successfully treated with NAC. We also document two novel variations in two of 15 children with previously unexplained liver cirrhosis. Examination of the National Center for Biotechnology Information databases revealed 274 coding region variations have been documented in 1125 TALDO1 sequences relative to 25 variations in 2870 TKT sequences (P < .0001). These findings suggest an unexpected prevalence and variety of genetic changes in human TALDO1 with relevance for liver injury that may be preventable by treatment with NAC.


Assuntos
Acetilcisteína/farmacologia , Haploinsuficiência/efeitos dos fármacos , Falência Hepática/induzido quimicamente , Transaldolase/deficiência , Adulto , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Via de Pentose Fosfato , Transaldolase/metabolismo , Adulto Jovem
16.
Microb Cell Fact ; 19(1): 138, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653007

RESUMO

BACKGROUND: During the pentose phosphate pathway (PPP), two important components, NADPH and pentoses, are provided to the cell. Previously it was shown that this metabolic pathway is a source of reducing agent for lipid synthesis from glucose in the yeast Yarrowia lipolytica. Y. lipolytica is an attractive microbial host since it is able to convert untypical feedstocks, such as glycerol, into oils, which subsequently can be transesterified to biodiesel. However, the lipogenesis process is a complex phenomenon, and it still remains unknown which genes from the PPP are involved in lipid synthesis. RESULTS: To address this problem we overexpressed five genes from this metabolic pathway: transaldolase (TAL1, YALI0F15587g), transketolase (TKL1, YALI0E06479g), ribulose-phosphate 3-epimerase (RPE1, YALI0C11880g) and two dehydrogenases, NADP+-dependent glucose-6-phosphate dehydrogenase (ZWF1, YALI0E22649g) and NADP+-dependent 6-phosphogluconate dehydrogenase (GND1, YALI0B15598g), simultaneously with diacylglycerol acyltransferase (DGA1, YALI0E32769g) and verified each resulting strain's ability to synthesize fatty acid growing on both glycerol and glucose as a carbon source. Our results showed that co-expression of DGA1 and TKL1 results in higher SCO synthesis, increasing lipid content by 40% over the control strain (DGA1 overexpression). CONCLUSIONS: Simultaneous overexpression of DGA1 and TKL1 genes results in a higher lipid titer independently from the fermentation conditions, such as carbon source, pH and YE supplementation.


Assuntos
Lipídeos/biossíntese , Transcetolase/metabolismo , Yarrowia/enzimologia , Biocombustíveis/microbiologia , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Fermentação , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Via de Pentose Fosfato , Transaldolase/genética , Transaldolase/metabolismo , Transcetolase/genética , Yarrowia/genética
17.
Appl Microbiol Biotechnol ; 104(9): 3885-3896, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32140842

RESUMO

ß-Hydroxy-α-amino acids (ßH-AAs) are key components of many bioactive molecules as well as exist as specialised metabolites. Among these ßH-AAs, 4-fluorothreonine (4-FT) is the only naturally occurring fluorinated AA discovered thus far. Here we report overexpression and biochemical characterisation of 4-fluorothreonine transaldolase from Streptomyces sp. MA37 (FTaseMA), a homologue of FTase previously identified in the biosynthesis of 4-FT in S. cattleya. FTaseMA displays considerable substrate plasticity to generate 4-FT as well as other ß-hydroxy-α-amino acids with various functionalities at C4 position, giving the prospect of new chemo-enzymatic applications. The enzyme has a hybrid of two catalytic domains, serine hydroxymethyltransferase (S) and aldolase (A). Site-directed mutagenesis allowed the identification of the key residues of FTases, suggesting that the active site of A domain has a historical reminiscent feature in metal-dependent aldolases. Elemental analysis demonstrated that FTaseMA is indeed a Zn2+-dependent enzyme, the first example of pyridoxal phosphate (PLP) enzyme family fused with a metal-binding domain carrying out a distinct catalytic role. Finally, FTaseMA showed divergent evolutionary origin with other PLP dependent enzymes.


Assuntos
Aminoácidos Aromáticos/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Treonina/análogos & derivados , Transaldolase/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida , Treonina/metabolismo , Transaldolase/genética
18.
PLoS Genet ; 13(3): e1006695, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28355222

RESUMO

Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan. Here we report that transaldolase (tald-1) deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK) MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB) homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2). We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidade/genética , Oxigenases/genética , Transaldolase/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Autofagia/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Oxigenases/biossíntese , Inanição , Transaldolase/antagonistas & inibidores , Resposta a Proteínas não Dobradas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
J Am Chem Soc ; 141(6): 2211-2214, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30673214

RESUMO

Albomycins are peptidyl thionucleoside natural products that display antimicrobial activity against clinically important pathogens. Their structures are characterized by a thioheptose with atypical stereochemistry including a d-xylofuranose ring modified with a d-amino acid moiety. Herein it is demonstrated that AbmH is a pyridoxal 5'-phosphate (PLP)-dependent transaldolase that catalyzes a threo-selective aldol-type reaction to generate the thioheptose core with a d-ribofuranose ring and an l-amino acid moiety. The conversion of l-to d-amino acid configuration is catalyzed by the PLP-dependent epimerase AbmD. The d- ribo to d- xylo conversion of the thiofuranose ring appears according to gene deletion experiments to be mediated by AbmJ, which is annotated as a radical S-adenosyl-l-methionine (SAM) enzyme. These studies establish several key steps in the assembly of the thioheptose core during the biosynthesis of albomycins.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Ferricromo/análogos & derivados , Heptoses/química , Nucleosídeos/química , Biocatálise , Ferricromo/química , Ferricromo/metabolismo , Estereoisomerismo , Transaldolase/metabolismo
20.
J Inherit Metab Dis ; 42(1): 147-158, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30740741

RESUMO

BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation. METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients. RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Células Endócrinas/metabolismo , Hormônios/metabolismo , Transaldolase/deficiência , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Estudos Retrospectivos , Inquéritos e Questionários , Transaldolase/genética , Transaldolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA