Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743626

RESUMO

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Rodopsina , Animais , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Camundongos , Rodopsina/genética , Rodopsina/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/genética , Miopia/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Escuridão , Transducina/genética , Transducina/metabolismo , Técnicas de Introdução de Genes , Modelos Animais de Doenças
2.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756602

RESUMO

T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.


Assuntos
Proteínas com Domínio T , Transducina , Animais , Camundongos , Transducina/genética , Transducina/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração , Sequências Reguladoras de Ácido Nucleico
3.
J Biol Chem ; 300(2): 105608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159849

RESUMO

Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEß subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Modelos Moleculares , Transducina , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Guanosina Trifosfato/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/química , Transducina/genética , Transducina/metabolismo , Animais , Bovinos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrutura Quaternária de Proteína , Ligação Proteica/efeitos dos fármacos , Domínio Catalítico , 1-Metil-3-Isobutilxantina/farmacologia , Bicamadas Lipídicas/metabolismo , Ativação Enzimática
4.
Nature ; 560(7719): 484-488, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30111842

RESUMO

In zebrafish, Müller glia (MG) are a source of retinal stem cells that can replenish damaged retinal neurons and restore vision1. In mammals, however, MG do not spontaneously re-enter the cell cycle to generate a population of stem or progenitor cells that differentiate into retinal neurons. Nevertheless, the regenerative machinery may exist in the mammalian retina, as retinal injury can stimulate MG proliferation followed by limited neurogenesis2-7. Therefore, there is still a fundamental question regarding whether MG-derived regeneration can be exploited to restore vision in mammalian retinas. Gene transfer of ß-catenin stimulates MG proliferation in the absence of injury in mouse retinas8. Here we report that following gene transfer of ß-catenin, cell-cycle-reactivated MG can be reprogrammed to generate rod photoreceptors by subsequent gene transfer of transcription factors essential for rod cell fate specification and determination. MG-derived rods restored visual responses in Gnat1rd17Gnat2cpfl3 double mutant mice, a model of congenital blindness9,10, throughout the visual pathway from the retina to the primary visual cortex. Together, our results provide evidence of vision restoration after de novo MG-derived genesis of rod photoreceptors in mammalian retinas.


Assuntos
Reprogramação Celular/genética , Neurogênese , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células-Tronco/citologia , Animais , Cegueira/congênito , Cegueira/genética , Cegueira/terapia , Ciclo Celular , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Masculino , Camundongos , Neuroglia/citologia , Neuroglia/metabolismo , Medicina Regenerativa , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transducina/genética , Córtex Visual/citologia , Vias Visuais , beta Catenina/genética , beta Catenina/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050024

RESUMO

Ambient light detection is important for the synchronization of the circadian clock to the external solar cycle. Light signals are sent to the suprachiasmatic nuclei (SCN), the site of the major circadian pacemaker. It has been assumed that cone photoreceptors contribute minimally to synchronization. Here, however, we find that cone photoreceptors are sufficient for mediating entrainment and transmitting photic information to the SCN, as evaluated in mice that have only cones as functional photoreceptors. Using in vivo electrophysiological recordings in the SCN of freely moving cone-only mice, we observed light responses in SCN neuronal activity in response to 60-s pulses of both ultraviolet (UV) (λmax 365 nm) and green (λmax 505 nm) light. Higher irradiances of UV light led to irradiance-dependent enhancements in SCN neuronal activity, whereas higher irradiances of green light led to a reduction in the sustained response with only the transient response remaining. Responses in SCN neuronal activity decayed with a half-max time of ∼9 min for UV light and less than a minute for green light, indicating differential input between short-wavelength-sensitive and mid-wavelength-sensitive cones for the SCN responsiveness. Furthermore, we show that UV light is more effective for photoentrainment than green light. Based on the lack of a full sustained response in cone-only mice, we confirmed that rapidly alternating light levels, rather than slowly alternating light, caused substantial phase shifts. Together, our data provide strong evidence that cone types contribute to photoentrainment and differentially affect the electrical activity levels of the SCN.


Assuntos
Relógios Biológicos , Células Fotorreceptoras Retinianas Cones/citologia , Animais , Fenômenos Eletrofisiológicos , Camundongos , Opsinas de Bastonetes/genética , Núcleo Supraquiasmático/metabolismo , Transducina/genética , Raios Ultravioleta
6.
EMBO J ; 38(23): e101409, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31696965

RESUMO

Adaptation is a general feature of sensory systems. In rod photoreceptors, light-dependent transducin translocation and Ca2+ homeostasis are involved in light/dark adaptation and prevention of cell damage by light. However, the underlying regulatory mechanisms remain unclear. Here, we identify mammalian Cul3-Klhl18 ubiquitin ligase as a transducin translocation modulator during light/dark adaptation. Under dark conditions, Klhl18-/- mice exhibited decreased rod light responses and subcellular localization of the transducin α-subunit (Tα), similar to that observed in light-adapted Klhl18+/+ mice. Cul3-Klhl18 promoted ubiquitination and degradation of Unc119, a rod Tα-interacting protein. Unc119 overexpression phenocopied Tα mislocalization observed in Klhl18-/- mice. Klhl18 weakly recognized casein kinase-2-phosphorylated Unc119 protein, which is dephosphorylated by Ca2+ -dependent phosphatase calcineurin. Calcineurin inhibition increased Unc119 expression and Tα mislocalization in rods. These results suggest that Cul3-Klhl18 modulates rod Tα translocation during light/dark adaptation through Unc119 ubiquitination, which is affected by phosphorylation. Notably, inactivation of the Cul3-Klhl18 ligase and calcineurin inhibitors FK506 and cyclosporine A that are known immunosuppressant drugs repressed light-induced photoreceptor damage, suggesting potential therapeutic targets.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/fisiologia , Adaptação à Escuridão , Luz , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Células Fotorreceptoras de Vertebrados/metabolismo , Transporte Proteico , Retina/lesões , Retina/metabolismo , Retina/patologia , Transducina/genética
7.
J Neurosci ; 41(15): 3320-3330, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33593858

RESUMO

Rod photoreceptors can be saturated by exposure to bright background light, so that no flash superimposed on the background can elicit a detectable response. This phenomenon, called increment saturation, was first demonstrated psychophysically by Aguilar and Stiles and has since been shown in many studies to occur in single rods. Recent experiments indicate, however, that rods may be able to avoid saturation under some conditions of illumination. We now show in ex vivo electroretinogram and single-cell recordings that in continuous and prolonged exposure even to very bright light, the rods of mice from both sexes recover as much as 15% of their dark current and that responses can persist for hours. In parallel to recovery of outer segment current is an ∼10-fold increase in the sensitivity of rod photoresponses. This recovery is decreased in transgenic mice with reduced light-dependent translocation of the G protein transducin. The reduction in outer-segment transducin together with a novel mechanism of visual-pigment regeneration within the rod itself enable rods to remain responsive over the whole of the physiological range of vision. In this way, rods are able to avoid an extended period of transduction channel closure, which is known to cause photoreceptor degeneration.SIGNIFICANCE STATEMENT Rods are initially saturated in bright light so that no flash superimposed on the background can elicit a detectable response. Frederiksen and colleagues show in whole retina and single-cell recordings that, if the background light is prolonged, rods slowly recover and can continue to produce significant responses over the entire physiological range of vision. Response recovery occurs by translocation of the G protein transducin from the rod outer to the inner segment, together with a novel mechanism of visual-pigment regeneration within the rod itself. Avoidance of saturation in bright light may be one of the principal mechanisms the retina uses to keep rod outer-segment channels from ever closing for too long a time, which is known to produce photoreceptor degeneration.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/metabolismo , Animais , Eletrorretinografia , Feminino , Luz , Masculino , Camundongos , Transporte Proteico , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Análise de Célula Única , Transducina/genética , Visão Ocular
8.
J Physiol ; 600(21): 4585-4601, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412676

RESUMO

The detection of light in the vertebrate retina utilizes a duplex system of closely related rod and cone photoreceptors: cones respond extremely rapidly, and operate at 'photopic' levels of illumination, from moonlight upwards; rods respond much more slowly, thereby obtaining greater sensitivity, and function effectively only at 'scotopic' levels of moonlight and lower. Rods and cones employ distinct isoforms of many of the proteins in the phototransduction cascade, and they thereby represent a unique evolutionary system, whereby the same process (the detection of light) uses a distinct set of genes in two classes of cell. The molecular mechanisms of phototransduction activation are described, and the classical quantitative predictions for the onset phase of the electrical response to light are developed. Recent work predicting the recovery phase of the rod's response to intense flashes is then presented, that provides an accurate account of the time that the response spends in saturation. Importantly, this also provides a new estimate for the rate at which a single rhodopsin activates molecules of the G-protein, transducin, that is substantially higher than other estimates in the literature. Finally, the evolutionary origin of the phototransduction proteins in rods and cones is examined, and it is shown that most of the rod/cone differences were established at the first of the two rounds of whole-genome duplication more than 500 million years ago.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/genética , Transducina/metabolismo , Retina/fisiologia , Transdução de Sinal Luminoso
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1216-1223, 2022 Nov 10.
Artigo em Zh | MEDLINE | ID: mdl-36317206

RESUMO

OBJECTIVE: To develop a multiplex PCR method for a rapid detection of Y chromosome-specific sequences in patients with Turner syndrome. METHODS: Nine genes were selected from various regions of the Y chromosome for designing the primers, which included SRY, TBL1Y, TSPY on the short arm of the Y chromosome, DDX3Y, HSFY1, RPS4Y2 and CDY1 on the long arm of Y chromosome and SHOX in the short arm and SPRY3 in the long arm of the pseudoautosomal region (PAR) of X and Y chromosomes. A multiplex PCR method for the nine genes in Y chromosome was established and optimized. The sensitivity was tested by using different amounts of genomic DNA. A total of 36 patients with Turner syndrome and a patient with male dwarfism with karyotype of 46, X, +mar were examined by the multiplex PCR method for the existence of materials from the Y chromosome. RESULTS: The optimization results of the multiplex PCR reaction system (50 µL) showed that when the final concentration of upstream and downstream of each pair of primers was 0.1 µM, the multiplex PCR reaction of the 9 pairs of primers clearly amplified the target with the expected band size, and there was no non-specific amplification. The bands were clearly visible when the amount of genomic DNA in the multiple PCR reaction system was as low as 1 ng. By using the method, we have examined the 36 patients with Turner syndrome. One patient with Turner syndrome with karyotype of 45,X[40]/47XYY[21] amplified specific seven genes on Y chromosome, 35 patients with Turner syndrome amplified only two target genes SHOX and SPRY3, but not the other seven specific genes on the Y chromosome, which was in keeping with the clinical manifestations of such patients. CONCLUSION: This study established a multiplex PCR reaction system with nine genes, which can quickly and accurately screen Y chromosome materials in patients with Turner syndrome. It has the advantages of low cost, simple operation, high specificity and rapid turn-around time, and can be used to detect Turner syndrome patients with Y chromosome material in time. The method has provided a diagnostic basis for preventive gonad resection to prevent malignant gonadal tumors.


Assuntos
Síndrome de Turner , Humanos , Masculino , Síndrome de Turner/genética , Reação em Cadeia da Polimerase Multiplex , Cromossomo Y , Cariotipagem , Primers do DNA , DNA , Cromossomos Humanos Y/genética , Transducina/genética , Antígenos de Histocompatibilidade Menor , RNA Helicases DEAD-box/genética
10.
Biochem Biophys Res Commun ; 557: 206-212, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33872990

RESUMO

Taste buds are complex sensory organs embedded in the epithelium of fungiform papillae (FP) and circumvallate papillae (CV). The sweet, bitter, and umami tastes are sensed by type II taste cells that express taste receptors (Tas1rs and Tas2rs) coupled with the taste G-protein α-gustducin. Recent studies revealed that the taste response profiles of α-gustducin-expressing cells are different between FP and CV, but which genes could generate such distinctive cell characteristics are still largely unknown. We performed a comprehensive transcriptome analysis on α-gustducin-expressing cells in mouse FP and CV by single-cell RNA sequencing combined with fluorescence-activated cell sorting. Transcriptome profiles of the α-gustducin-expressing cells showed various expression patterns of taste receptors. Our clustering analysis defined the specific cell populations derived from FP or CV based on their distinct gene expression. Immunohistochemistry confirmed the specific expression of galectin-3, encoded by Lgals3, which was recognized as a differentially expressed gene in the transcriptome analysis. Our work provides fundamental knowledge toward understanding the genetic heterogeneity of type II cells, potentially revealing differential characterization of FP and CV taste bud cells.


Assuntos
Galectina 3/metabolismo , Regulação da Expressão Gênica/genética , Papilas Gustativas/metabolismo , Língua/metabolismo , Transducina/metabolismo , Animais , Diferenciação Celular/genética , Feminino , Galectina 3/genética , Perfilação da Expressão Gênica , Ontologia Genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Percepção Gustatória/genética , Transducina/genética
11.
Histopathology ; 78(2): 265-275, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32692439

RESUMO

AIMS: Primary intracranial sarcoma, DICER1-mutant is a recently described central nervous system tumour with specific genomic and DNA-methylation profiles. Although some of its histological features (focal spindle-cell morphology, intracytoplasmic eosinophilic granules, and focal heterologous differentiation) are common across most reported cases, the presence of significant histological variability and the lack of differentiation pose diagnostic challenges. We aim to further define the immunoprofile of this tumor. METHODS AND RESULTS: We reviewed the clinical history and performed immunohistochemistry for glial fibrillary acidic protein, oligodendrocyte transcription factor 2, SOX2, SOX10, S100, histone H3 trimethylated on lysine 27 (H3K27me3), desmin, myogenin, CD99, epithelial membrane antigen (EMA) and transducin-like enhancer of split 1 (TLE1) on six primary intracranial sarcomas, DICER1-mutant, with appropriate controls. Targeted exome sequencing was performed on all cases. The sarcomas showed diffuse (n = 4), mosaic (n = 1) or minimal (≤5%, n = 1) loss of H3K27 trimethylation and nuclear TLE1 expression (n = 6). Four had immunohistochemical evidence of myogenic differentiation. SOX2, SOX10, S100 and EMA were negative; CD99 expression ranged from focal cytoplasmic (n = 4) to crisp diffuse membranous (n = 2). One tumour had focal cartilaginous differentiation. Similar immunohistochemical findings were observed in a pleuropulmonary blastoma (albeit with focal TLE1 expression), a DICER1-related pineoblastoma, and an embryonal tumour with a multilayered rosette-like DICER1-related cerebellar tumour. Targeted exome sequencing confirmed the presence of pathogenic biallelic DICER1 mutations in all tumours included in this study. CONCLUSION: We conclude that H3K27me3 and TLE1 immunostains, when utilised in combination, can be helpful diagnostic markers for primary intracranial sarcoma, DICER1-mutant.


Assuntos
Neoplasias Encefálicas , RNA Helicases DEAD-box/genética , Histonas/metabolismo , Ribonuclease III/genética , Sarcoma , Transducina , Adolescente , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica/métodos , Lactente , Lisina/metabolismo , Masculino , Metilação , Mutação , Sarcoma/genética , Sarcoma/patologia , Transducina/genética , Transducina/metabolismo
12.
Haematologica ; 106(11): 2927-2939, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054136

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common Non-Hodgkin's lymphoma and is characterized by a remarkable heterogeneity with diverse variants that can be identified histologically and molecularly. Large-scale gene expression profiling studies have identified the germinal center B-cell (GCB-) and activated B-cell (ABC-) subtypes. Standard chemo-immunotherapy remains standard front line therapy, curing approximately two thirds of patients. Patients with refractory disease or those who relapse after salvage treatment have an overall poor prognosis highlighting the need for novel therapeutic strategies. Transducin ß-like protein 1 (TBL1) is an exchange adaptor protein encoded by the TBL1X gene and known to function as a master regulator of the Wnt signalling pathway by binding to ß-CATENIN and promoting its downstream transcriptional program. Here, we show that, unlike normal B-cells, DLBCL cells express abundant levels of TBL1 and its overexpression correlates with poor clinical outcome regardless of DLBCL molecular subtype. Genetic deletion of TBL1 and pharmacological approach using tegavivint, a first-in-class small molecule targeting TBL1 (Iterion Therapeutics), promotes DLBCL cell death in vitro and in vivo. Through an integrated genomic, biochemical, and pharmacologic analyses, we characterized a novel, ß-CATENIN independent, post-transcriptional oncogenic function of TBL1 in DLBCL where TBL1 modulates the stability of key oncogenic proteins such as PLK1, MYC, and the autophagy regulatory protein BECLIN-1 through its interaction with a SKP1-CUL1-F-box (SCF) protein supercomplex. Collectively, our data provide the rationale for targeting TBL1 as a novel therapeutic strategy in DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Transducina , Carcinogênese , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Recidiva Local de Neoplasia , Prognóstico , Transducina/genética
13.
Horm Metab Res ; 53(4): 225-235, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33513624

RESUMO

Autosomal dominant pseudohypoparathyroidism 1B (AD-PHP1B) is a rare endocrine and imprinted disorder. The objective of this study is to clarify the imprinted regulation of the guanine nucleotide binding-protein α-stimulating activity polypeptide 1 (GNAS) cluster in the occurrence and development of AD-PHP1B based on animal and clinical patient studies. The methylation-specific multiples ligation-dependent probe amplification (MS-MLPA) was conducted to detect the copy number variation in syntaxin-16 (STX16) gene and methylation status of the GNAS differentially methylated regions (DMRs). Long-range PCR was used to confirm deletion at STX16 gene. In the first family, DNA analysis of the proband and proband's mother revealed an isolated loss of methylation (LOM) at exon A/B and a 3.0 kb STX16 deletion. The patient's healthy grandmother had the 3.0 kb STX16 deletion but no epigenetic abnormality. The patient's healthy maternal aunt showed no genetic or epigenetic abnormality. In the second family, the analysis of long-range PCR revealed the 3.0 kb STX16 deletion for the proband but not her children. In this study, 3.0 kb STX16 deletion causes isolated LOM at exon A/B in two families, which is the most common genetic mutation of AD-PHP1B. The deletion involving NESP55 or AS or genomic rearrangements of GNAS can also result in AD-PHP1B, but it's rare. LOM at exon A/B DMR is prerequisite methylation defect of AD-PHP1B. STX16 and NESP55 directly control the imprinting at exon A/B, while AS controls the imprinting at exon A/B by regulating the transcriptional level of NESP55.


Assuntos
Transtornos Cromossômicos/genética , Epigenômica , Pseudo-Hipoparatireoidismo/genética , Adolescente , Adulto , Cromograninas/genética , Cromograninas/metabolismo , Transtornos Cromossômicos/metabolismo , Metilação de DNA , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Pseudo-Hipoparatireoidismo/metabolismo , Sintaxina 16/genética , Sintaxina 16/metabolismo , Transducina/genética , Transducina/metabolismo , Pseudo-Hipoparatireoidismo
14.
Int J Legal Med ; 135(4): 1351-1358, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33903958

RESUMO

The Y chromosome is male-specific and is important for spermatogenesis and male fertility. However, the Y chromosome is poorly characterized due to massive palindromes and inverted repeats, which increase the likelihood of genomic rearrangements, resulting in short tandem repeats on the Y chromosome or long fragment deletions. The present study reports a large-scale (2.573~2.648 Mb) deletion in the Yp11.2 region in a Chinese population based on the analysis of 34 selected Y-specific sequence-tagged sites and subsequent sequencing of the breakpoint junctions on the Y chromosome from 5,068,482-5,142,391 bp to 7,715,462-7,716,695 bp. The results of sequence analysis indicated that the deleted region included part or all of the following five genes: PCDH11Y, TSPY, AMELY, TBL1Y, and RKY. These genes are associated with spermatogenesis or amelogenesis and various other processes; however, specific physiological functions and molecular mechanisms of these genes remain unclear. Notably, individuals with this deletion pattern did not have an obvious pathological phenotype but manifested some degree of amelogenesis imperfecta.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Y , Loci Gênicos , Sitios de Sequências Rotuladas , Amelogenina/genética , Povo Asiático/genética , Caderinas/genética , Proteínas de Ciclo Celular/genética , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 11 , Humanos , Masculino , Repetições de Microssatélites , Proteínas Serina-Treonina Quinases/genética , Protocaderinas , Transducina/genética
15.
Doc Ophthalmol ; 140(2): 147-157, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31583501

RESUMO

PURPOSE: A single variant (p.G38D) in the GNAT1 gene, encoding the rod-specific transducin α-subunit in phototransduction, has been reported only in one French family with Nougaret-type autosomal dominant congenital stationary night blindness (CSNB). We identified a Japanese family with Nougaret-type CSNB and cone-rod dystrophy (CORD). METHODS: Five patients with CSNB and two patients with childhood-onset CORD were recruited. We performed a comprehensive ophthalmic examination including electroretinography (ERG). Disease-causing variants were identified by whole exome sequencing, with candidates confirmed by Sanger sequencing in nine family members. RESULTS: The GNAT1 variant (p.G38D) was identified in all four CSNB patients, whereas the two CORD patients carried biallelic truncated known ABCA4 variants as well as the GNAT1 variant. Clinically, no remarkable findings were observed in fuduscopy, fundus autofluorescence, or optical coherence tomography images from the CSNB patients. No response was detectable by rod ERG. The a-waves of standard and bright flash ERG were delayed and broadened rather than biphasic, and b/a-wave amplitude ratio was negative. Cone and 30-Hz flicker responses were normal, and overall, the ERG findings were compatible with previous descriptions of Nougaret-type CSNB. ERG of the CORD patients with macular atrophy showed non-recordable rod response and severely decreased standard flash, cone and 30-Hz flicker responses. CONCLUSIONS: This is the second report of a Nougaret-type CSNB family with the GNAT1 variant. Our novel findings suggest that coexistence of the GNAT1 and biallelic ABCA4 variants is associated with an overlapping phenotype with both Nougaret-type CSNB and CORD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Distrofias de Cones e Bastonetes/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Miopia/genética , Cegueira Noturna/genética , Polimorfismo de Nucleotídeo Único , Transducina/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Distrofias de Cones e Bastonetes/fisiopatologia , Eletrorretinografia , Oftalmopatias Hereditárias/fisiopatologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Miopia/fisiopatologia , Cegueira Noturna/fisiopatologia , Linhagem , Fenótipo , Estimulação Luminosa , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Sequenciamento do Exoma
16.
Proc Natl Acad Sci U S A ; 114(14): E2937-E2946, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320964

RESUMO

The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors' subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice lacking the rod G-protein alpha subunit, transducin (Gαt), revealing these responses to be triggered by phototransduction. For stimuli that photoactivated one rhodopsin per Gαt the rod OS swelling response reached a saturated elongation of 10.0 ± 2.1%, at a maximum rate of 0.11% s-1 Analyzing swelling as osmotically driven water influx, we find the H2O membrane permeability of the rod OS to be (2.6 ± 0.4) × 10-5 cm⋅s-1, comparable to that of other cells lacking aquaporin expression. Application of Van't Hoff's law reveals that complete activation of phototransduction generates a potentially harmful 20% increase in OS osmotic pressure. The increased backscattering from the base of the OS is explained by a model combining cytoplasmic swelling, translocation of dissociated G-protein subunits from the disc membranes into the cytoplasm, and a relatively higher H2O permeability of nascent discs in the basal rod OS. Translocation of phototransduction components out of the OS may protect rods from osmotic stress, which could be especially harmful in disease conditions that affect rod OS structural integrity.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/fisiologia , Transducina/metabolismo , Animais , Aquaporinas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Luz , Transdução de Sinal Luminoso , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Concentração Osmolar , Osmose , Tomografia de Coerência Óptica , Transducina/genética
17.
Proc Natl Acad Sci U S A ; 114(16): E3243-E3250, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28348241

RESUMO

Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. The majority of RTT missense mutations disrupt the interaction of the MeCP2 with DNA or the nuclear receptor corepressor (NCoR)/silencing mediator of retinoic acid and thyroid receptors (SMRT) corepressor complex. Here, we show that the "NCoR/SMRT interaction domain" (NID) of MeCP2 directly contacts transducin beta-like 1 (TBL1) and TBL1 related (TBLR1), two paralogs that are core components of NCoR/SMRT. We determine the cocrystal structure of the MeCP2 NID in complex with the WD40 domain of TBLR1 and confirm by in vitro and ex vivo assays that mutation of interacting residues of TBLR1 and TBL1 disrupts binding to MeCP2. Strikingly, the four MeCP2-NID residues mutated in RTT are those residues that make the most extensive contacts with TBLR1. Moreover, missense mutations in the gene for TBLR1 that are associated with intellectual disability also prevent MeCP2 binding. Our study therefore reveals the molecular basis of an interaction that is crucial for optimal brain function.


Assuntos
Proteína 2 de Ligação a Metil-CpG/química , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Receptores Citoplasmáticos e Nucleares/química , Proteínas Repressoras/química , Síndrome de Rett/genética , Cristalografia por Raios X , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Síndrome de Rett/patologia , Transducina/química , Transducina/genética , Transducina/metabolismo
18.
J Biol Chem ; 293(46): 17941-17952, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30266806

RESUMO

Two regions on the α subunits of heterotrimeric GTP-binding proteins (G-proteins), the Switch II/α2 helix (which changes conformation upon GDP-GTP exchange) and the α3 helix, have been shown to contain the binding sites for their effector proteins. However, how the binding of Gα subunits to their effector proteins is translated into the stimulation of effector activity is still poorly understood. Here, we took advantage of a reconstituted rhodopsin-coupled phototransduction system to address this question and identified a distinct surface and an essential residue on the α subunit of the G-protein transducin (αT) that is necessary to fully activate its effector enzyme, the cGMP phosphodiesterase (PDE). We started with a chimeric G-protein α subunit (αT*) comprising residues mainly from αT and a short stretch of residues from the Gi1 α subunit (αi1), which only weakly stimulates PDE activity. We then reinstated the αT residues by systematically replacing the corresponding αi1 residues within αT* with the aim of fully restoring PDE stimulatory activity. These experiments revealed that the αG/α4 loop and a phenylalanine residue at position 283 are essential for conferring the αT* subunit with full PDE stimulatory capability. We further demonstrated that this same region and amino acid within the α subunit of the Gs protein (αs) are necessary for full adenylyl cyclase activation. These findings highlight the importance of the αG/α4 loop and of an essential phenylalanine residue within this region on Gα subunits αT and αs as being pivotal for their selective and optimal stimulation of effector activity.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Fenilalanina/química , Transducina/metabolismo , Adenilil Ciclases/metabolismo , Animais , Bovinos , Cromograninas/metabolismo , Ativação Enzimática , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Mutação com Ganho de Função , Células HEK293 , Humanos , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rodopsina/metabolismo , Transducina/genética
19.
Mol Ther ; 26(10): 2397-2406, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30064895

RESUMO

In patients born blind with retinal dystrophies, understanding the critical periods of cortical plasticity is important for successful visual restoration. In this study, we sought to model childhood blindness and investigate the plasticity of visual pathways. To this end, we generated double-mutant (Pde6ccpfl1/cpfl1Gnat1IRD2/IRD2) mice with absent rod and cone photoreceptor function, and we evaluated their response for restoring rod (GNAT1) function through gene therapy. Despite the limited effectiveness of gene therapy in restoring visual acuity in patients with retinal dystrophy, visual acuity was, unexpectedly, successfully restored in the mice at the level of the primary visual cortex in this study. This success in visual restoration, defined by changes in the quantified optokinetic response and pattern visually evoked potential, was achieved regardless of the age at treatment (up to 16 months). In the contralateral visual cortex, cortical plasticity, tagged with light-triggered transcription of Arc, was also restored after the treatment in blind mice carrying an Arc promoter-driven reporter gene, dVenus. Our results demonstrate the remarkable plasticity of visual circuits for one of the two photoreceptor mechanisms in older as well as younger mice with congenital blindness due to retinal dystrophies.


Assuntos
Cegueira/terapia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Terapia Genética , Distrofias Retinianas/terapia , Transducina/genética , Acuidade Visual/genética , Animais , Cegueira/genética , Cegueira/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Eletrorretinografia , Subunidades alfa de Proteínas de Ligação ao GTP/administração & dosagem , Humanos , Camundongos , Mutação , Retina/efeitos dos fármacos , Retina/patologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/patologia , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Transducina/administração & dosagem , Acuidade Visual/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Córtex Visual/patologia
20.
Mol Cell ; 43(2): 203-16, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777810

RESUMO

Dysregulation of Wnt signaling has been implicated in tumorigenesis. The role of Transducin ß-like proteins TBL1-TBLR1 in the promotion of Wnt/ß-catenin-mediated oncogenesis has recently been emphasized; however, the molecular basis of activation of Wnt signaling by the corepressor TBL1-TBLR1 is incompletely understood. Here, we show that both TBL1 and TBLR1 are SUMOylated in a Wnt signaling-dependent manner, and that this modification is selectively reversed by SUMO-specific protease I (SENP1). SUMOylation dismissed TBL1-TBLR1 from the nuclear hormone receptor corepressor (NCoR) complex, increased recruitment of the TBL1-TBLR1-ß-catenin complex to the promoter of Wnt target genes, and consequently led to activation of Wnt signaling. Conversely, SENP1 decreased formation of the TBL1-TBLR1-ß-catenin complex, leading to inhibition of ß-catenin-mediated transcription. Importantly, inhibition of SUMOylation significantly decreased the tumorigenicity of SW480 colon cancer cells. Thus, our data reveal a mechanism for activation of Wnt signaling via the SUMOylation-dependent disassembly of the corepressor complex.


Assuntos
Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Células 3T3 , Animais , Humanos , Camundongos , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sumoilação , Transducina/genética , Transducina/metabolismo , Transfecção , Células Tumorais Cultivadas , Proteínas Wnt/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA