Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 866
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Genet ; 17(10): e1009826, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624020

RESUMO

Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.


Assuntos
Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Tolerância a Medicamentos/genética , Furaldeído/análogos & derivados , Mutação/genética , Saccharomyces cerevisiae/genética , Transformação Genética/genética , Biomassa , Fermentação/genética , Furaldeído/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 117(46): 28925-28929, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144504

RESUMO

Cellular transformation is associated with dramatic changes in gene expression, but it is difficult to determine which regulated genes are oncogenically relevant. Here we describe Pheno-RNA, a general approach to identifying candidate genes associated with a specific phenotype. Specifically, we generate a "phenotypic series" by treating a nontransformed breast cell line with a wide variety of molecules that induce cellular transformation to various extents. By performing transcriptional profiling across this phenotypic series, the expression profile of every gene can be correlated with the strength of the transformed phenotype. We identify ∼200 genes whose expression profiles are very highly correlated with the transformation phenotype, strongly suggesting their importance in transformation. Within biological categories linked to cancer, some genes show high correlations with the transformed phenotype, but others do not. Many genes whose expression profiles are highly correlated with transformation have never been associated with cancer, suggesting the involvement of heretofore unknown genes in cancer.


Assuntos
Variação Biológica da População/genética , Estudos de Associação Genética/métodos , Transformação Genética/genética , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fenótipo , RNA/genética
3.
Proc Natl Acad Sci U S A ; 117(42): 26389-26397, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020260

RESUMO

Agrobacterium tumefaciens is the causal agent of crown gall disease. The bacterium is capable of transferring a segment of single-stranded DNA (ssDNA) into recipient cells during the transformation process, and it has been widely used as a genetic modification tool for plants and nonplant organisms. Transferred DNA (T-DNA) has been proposed to be escorted by two virulence proteins, VirD2 and VirE2, as a nucleoprotein complex (T-complex) that targets the host nucleus. However, it is not clear how such a proposed large DNA-protein complex is delivered through the host nuclear pore in a natural setting. Here, we studied the natural nuclear import of the Agrobacterium-delivered ssDNA-binding protein VirE2 inside plant cells by using a split-GFP approach with a newly constructed T-DNA-free strain. Our results demonstrate that VirE2 is targeted into the host nucleus in a VirD2- and T-DNA-dependent manner. In contrast with VirD2 that binds to plant importin α for nuclear import, VirE2 directly interacts with the host nuclear pore complex component nucleoporin CG1 to facilitate its nuclear uptake and the transformation process. Our data suggest a cooperative nuclear import model in which T-DNA is guided to the host nuclear pore by VirD2 and passes through the pore with the assistance of interactions between VirE2 and host nucleoporin CG1. We hypothesize that this large linear nucleoprotein complex (T-complex) is targeted to the nucleus by a "head" guide from the VirD2-importin interaction and into the nucleus by a lateral assistance from the VirE2-nucleoporin interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Canais Iônicos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Agrobacterium tumefaciens/genética , Núcleo Celular/metabolismo , DNA Bacteriano/genética , DNA de Cadeia Simples/metabolismo , Células Vegetais/metabolismo , Rhizobium/genética , Nicotiana/genética , Transformação Genética/genética , Virulência , Fatores de Virulência/metabolismo
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216331

RESUMO

A highly efficient Agrobacterium-mediated transformation method is needed for the molecular study of model tree species such as hybrid poplar 84K (Populus alba × P. glandulosa cv. '84K'). In this study, we report a callus-based transformation method that exhibits high efficiency and reproducibility. The optimized callus induction medium (CIM1) induced the development of calli from leaves with high efficiency, and multiple shoots were induced from calli growing on the optimized shoot induction medium (SIM1). Factors affecting the transformation frequency of calli were optimized as follows: Agrobacterium concentration sets at an OD600 of 0.6, Agrobacterium infective suspension with an acetosyringone (AS) concentration of 100 µM, infection time of 15 min, cocultivation duration of 2 days and precultivation duration of 6 days. Using this method, transgenic plants are obtained within approximately 2 months with a transformation frequency greater than 50%. Polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR) and ß-galactosidase (GUS) histochemical staining analyses confirmed the successful generation of stable transformants. Additionally, the calli from leaves were subcultured and used to obtain new explants; the high transformation efficiency was still maintained in subcultured calli after 6 cycles. This method provides a reference for developing effective transformation protocols for other poplar species.


Assuntos
Acetofenonas/metabolismo , Populus/genética , Transformação Genética/genética , Agrobacterium tumefaciens/genética , Vetores Genéticos/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Reprodutibilidade dos Testes
5.
Mol Syst Biol ; 16(11): e9245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33206464

RESUMO

Dormancy is colloquially considered as extending lifespan by being still. Starved yeasts form dormant spores that wake-up (germinate) when nutrients reappear but cannot germinate (die) after some time. What sets their lifespans and how they age are open questions because what processes occur-and by how much-within each dormant spore remains unclear. With single-cell-level measurements, we discovered how dormant yeast spores age and die: spores have a quantifiable gene-expressing ability during dormancy that decreases over days to months until it vanishes, causing death. Specifically, each spore has a different probability of germinating that decreases because its ability to-without nutrients-express genes decreases, as revealed by a synthetic circuit that forces GFP expression during dormancy. Decreasing amounts of molecules required for gene expression-including RNA polymerases-decreases gene-expressing ability which then decreases chances of germinating. Spores gradually lose these molecules because they are produced too slowly compared with their degradations, causing gene-expressing ability to eventually vanish and, thus, death. Our work provides a systems-level view of dormancy-to-death transition.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Morte Celular/genética , Esporos Fúngicos/genética , Fase G2/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/fisiologia , Transformação Genética/genética
6.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925272

RESUMO

The development of an ideal model plant located at a key phylogenetic node is critically important to advance functional and regulatory studies of key regulatory genes in the evolutionary developmental (evo-devo) biology field. In this study, we selected Chirita pumila in the family Gesneriaceae, a basal group in Lamiales, as a model plant to optimize its genetic transformation system established previously by us through investigating a series of factors and further conduct functional test of the CYC-like floral symmetry gene CpCYC. By transforming a RNAi:CpCYC vector, we successfully achieved the desired phenotypes of upright actinomorphic flowers, which suggest that CpCYC actually determines the establishment of floral zygomorphy and the horizontal orientation of flowers in C. pumila. We also confirmed the activities of CpCYC promoter in dorsal petals, dorsal/lateral staminodes, as well as the pedicel by transferring a CpCYC promoter:GUS vector into C. pumila. Furthermore, we testified the availability of a transient gene expression system using C. pumila mesophyll protoplasts. The improved transformation system together with the inherent biological features would make C. pumila an attractive new model in functional and regulatory studies for a broad range of evo-devo issues.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Lamiales/genética , Transformação Genética/genética , Evolução Biológica , Flores/genética , Genes de Plantas/genética , Magnoliopsida/genética , Modelos Biológicos , Fenótipo , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo
7.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500582

RESUMO

Salvia corrugata Vahl. is an interesting source of abietane and abeo-abietane compounds that showed antibacterial, antitumor, and cytotoxic activities. The aim of the study was to obtain transformed roots of S. corrugata and to evaluate the production of terpenoids in comparison with in vivo root production. Hairy roots were initiated from leaf explants by infection with ATCC 15834 Agrobacterium rhizogenes onto hormone-free Murashige and Skoog (MS) solid medium. Transformation was confirmed by polymerase chain reaction analysis of rolC and virC1 genes. The biomass production was obtained in hormone-free liquid MS medium using Temporary Immersion System bioreactor RITA®. The chromatographic separation of the methanolic extract of the untransformed roots afforded horminone, ferruginol, 7-O-acetylhorminone and 7-O-methylhorminone. Agastol and ferruginol were isolated and quantified from the hairy roots. The amount of these metabolites indicated that the hairy roots of S. corrugata can be considered a source of these compounds.


Assuntos
Abietanos/química , Diterpenos/química , Raízes de Plantas/química , Salvia/química , Agrobacterium/química , Agrobacterium/genética , Biomassa , Reatores Biológicos , Meios de Cultura/química , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Salvia/genética , Transformação Genética/genética
8.
Mol Microbiol ; 112(4): 1308-1325, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31396996

RESUMO

Natural transformation mediates horizontal gene transfer, and thereby promotes exchange of antibiotic resistance and virulence traits among bacteria. Streptococcus pneumoniae, the first known transformable bacterium, rapidly activates and then terminates the transformation state, but it is unclear how the bacterium accomplishes this rapid turn-around at the protein level. This work determined the transcriptomic and proteomic dynamics during the window of pneumococcal transformation. RNA sequencing revealed a nearly uniform temporal pattern of rapid transcriptional activation and subsequent shutdown for the genes encoding transformation proteins. In contrast, mass spectrometry analysis showed that the majority of transformation proteins were substantially preserved beyond the window of transformation. However, ComEA and ComEC, major components of the DNA uptake apparatus for transformation, were completely degraded at the end of transformation. Further mutagenesis screening revealed that the membrane-associated serine protease HtrA mediates selective degradation of ComEA and ComEC, strongly suggesting that breakdown of the DNA uptake apparatus by HtrA is an important mechanism for termination of pneumococcal transformation. Finally, our mutagenesis analysis showed that HtrA inhibits natural transformation of Streptococcus mitis and Streptococcus gordonii. Together, this work has revealed that HtrA regulates the level and duration of natural transformation in multiple streptococcal species.


Assuntos
Serina Endopeptidases/metabolismo , Transformação Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Transferência Genética Horizontal , Proteômica , Serina Endopeptidases/genética , Serina Proteases/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transcriptoma/genética , Transformação Genética/genética , Virulência/genética
9.
Fungal Genet Biol ; 142: 103448, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32866613

RESUMO

Trichoderma reesei is the foremost fungal producer of enzymes for industrial processes. Here, we use fluorescent live cell imaging of germinating conidia to improve Agrobacterium tumefaciens-mediated transformation (ATMT) efficiency. We define the timing of (a) morphological changes and (b) nuclear reorganisation during initial conidia germination. This reveals that conidia swell for 7 h, during which nuclei undergo 2 non-synchronised mitotic divisions. Histones are recruited to the nucleus during the first 2 h, suggesting that conidia enter S-phase immediately after activation. This correlates with a significantly increased ATMT efficiency at 2 h after germination initiation. This finding promises to improve genetic manipulation efficiency in T. reesei.


Assuntos
Agrobacterium tumefaciens/genética , Hypocreales/genética , Esporos Fúngicos/genética , Transformação Genética/genética , DNA Bacteriano/genética , Vetores Genéticos/genética , Hypocreales/crescimento & desenvolvimento , Mutagênese Insercional , Esporos Fúngicos/crescimento & desenvolvimento
10.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033195

RESUMO

Brachypodium distachyon has become an excellent model for plant breeding and bioenergy grasses that permits many fundamental questions in grass biology to be addressed. One of the constraints to performing research in many grasses has been the difficulty with which they can be genetically transformed and the generally low frequency of such transformations. In this review, we discuss the contribution that transformation techniques have made in Brachypodium biology as well as how Brachypodium could be used to determine the factors that might contribute to transformation efficiency. In particular, we highlight the latest research on the mechanisms that govern the gradual loss of embryogenic potential in a tissue culture and propose using B. distachyon as a model for other recalcitrant monocots.


Assuntos
Brachypodium/genética , Técnicas de Cultura de Tecidos/métodos , Proteínas de Plantas/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética
11.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659946

RESUMO

In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.


Assuntos
Produtos Agrícolas/genética , Plastídeos/genética , Transformação Genética/genética , Animais , Cloroplastos/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Genoma de Cloroplastos/genética , Humanos , Nanotubos de Carbono/química , Plantas Geneticamente Modificadas/genética , Transgenes/genética
12.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937889

RESUMO

We previously reported that the Agrobacterium virulence protein VirD5 possesses transcriptional activation activity, binds to a specific DNA element D5RE, and is required for Agrobacterium-mediated stable transformation, but not for transient transformation. However, direct evidence for a role of VirD5 in plant transcriptional regulation has been lacking. In this study, we found that the Arabidopsis gene D5RF (coding for VirD5 response F-box protein, At3G49480) is regulated by VirD5. D5RF has two alternative transcripts of 930 bp and 1594 bp that encode F-box proteins of 309 and 449 amino acids, designated as D5RF.1 and D5RF.2, respectively. D5RF.2 has a N-terminal extension of 140 amino acids compared to D5RF.1, and both of them are located in the plant cell nucleus. The promoter of the D5RF.1 contains two D5RE elements and can be activated by VirD5. The expression of D5RF is downregulated when the host plant is infected with virD5 deleted Agrobacterium. Similar to VirD5, D5RF also affects the stable but not transient transformation efficiency of Agrobacterium. Some pathogen-responsive genes are downregulated in the d5rf mutant. In conclusion, this study further confirmed Agrobacterium VirD5 as the plant transcription activator and identified Arabidopsis thalianaD5RF.1 as the first target gene of VirD5 in regulation.


Assuntos
Agrobacterium/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas F-Box/genética , Transformação Genética/genética , Fatores de Virulência/genética , Virulência/genética , Arabidopsis/microbiologia , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas/genética , Células Vegetais/microbiologia , Ligação Proteica/genética
13.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979077

RESUMO

Low stability of transgenes and high variability of their expression levels among the obtained transformants are still pending challenges in the nuclear genetic transformation of microalgae. We have generated a new multicistronic microalgal expression plasmid, called Phyco69, to make easier the large phenotypic screening usually necessary for the selection of high-expression stable clones. This plasmid contains a polylinker region (PLK) where any gene of interest (GOI) can be inserted and get linked, through a short viral self-cleaving peptide to the amino terminus of the aminoglycoside 3'-phosphotransferase (APHVIII) from Streptomyces rimosus, which confers resistance to the antibiotic paromomycin. The plasmid has been validated by expressing a second antibiotic resistance marker, the ShBLE gene, which confers resistance to phleomycin. It has been shown, by RT-PCR and by phenotypic studies, that the fusion of the GOI to the selective marker gene APHVIII provides a simple method to screen and select the transformants with the highest level of expression of both the APHVIII gene and the GOI among the obtained transformants. Immunodetection studies have shown that the multicistronic transcript generated from Phyco69 is correctly processed, producing independent gene products from a common promoter.


Assuntos
Microalgas/genética , Plasmídeos/genética , Transgenes/genética , Antibacterianos/farmacologia , Marcadores Genéticos/genética , Canamicina Quinase/genética , Paromomicina/farmacologia , Regiões Promotoras Genéticas/genética , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Transformação Genética/genética
14.
Plant Cell ; 28(7): 1510-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27335450

RESUMO

Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.


Assuntos
Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta/genética , Agrobacterium tumefaciens/genética , Produtos Agrícolas/metabolismo , DNA de Plantas/genética , Recombinação Genética/genética , Transformação Genética/genética
15.
Curr Top Microbiol Immunol ; 418: 287-317, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29992359

RESUMO

The mechanism of T-DNA integration into plant genomes during Agrobacterium-mediated genetic transformation is still not understood. As genetic transformation of plants via Agrobacterium has become a routine practice among plant biologists, understanding T-DNA integration remains important for several reasons. First, T-DNA is the final step in one of the unique cases of inter-kingdom horizontal gene transfer in nature. Second, understanding T-DNA integration is important for biotechnological applications. For example, better knowledge of this process may help develop methods to transform species that are currently not susceptible to Agrobacterium-mediated transformation. In addition, regulatory agencies usually require "clean" and "precise" transgenic insertion events, whereas transgenic insertions are commonly complex unpredictable structures. Furthermore, whereas T-DNA integration under natural conditions occurs randomly, technology to direct T-DNA to specific sites in the genome is highly desired. A better understanding of T-DNA integration may help develop methods to achieve more desirable results. Finally, gene targeting methods that require a foreign DNA template for precise DNA modifications in plants often utilize Agrobacterium to deliver the DNA template. Better understanding of the fate of T-DNA in the plant nucleus may help utilize T-DNA for more efficient gene targeting. For introducing gene targeting reagents, efficient delivery of T-DNA without ectopic integration would be useful. The following review summarizes current knowledge related to T-DNA integration. Five major open questions related to T-DNA integration are being presented. Finally, different models for T-DNA integration are being discussed, and a revised model is proposed.


Assuntos
Agrobacterium/genética , DNA Bacteriano/genética , Genoma de Planta/genética , Recombinação Genética , Incerteza , Marcação de Genes , Transformação Genética/genética
16.
Microb Ecol ; 77(2): 546-557, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30009332

RESUMO

Antimicrobial resistance (AMR) among bacterial species that resides in complex ecosystems is a natural phenomenon. Indiscriminate use of antimicrobials in healthcare, livestock, and agriculture provides an evolutionary advantage to the resistant variants to dominate the ecosystem. Ascendency of resistant variants threatens the efficacy of most, if not all, of the antimicrobial drugs commonly used to prevent and/or cure microbial infections. Resistant phenotype is very common in enteric bacteria. The most common mechanisms of AMR are enzymatic modifications to the antimicrobials or their target molecules. In enteric bacteria, most of the resistance traits are acquired by horizontal gene transfer from closely or distantly related bacterial population. AMR traits are generally linked with mobile genetic elements (MGEs) and could rapidly disseminate to the bacterial species through horizontal gene transfer (HGT) from a pool of resistance genes. Although prevalence of AMR genes among pathogenic bacteria is widely studied in the interest of infectious disease management, the resistance profile and the genetic traits that encode resistance to the commensal microbiota residing in the gut of healthy humans are not well-studied. In the present study, we have characterized AMR phenotypes and genotypes of five dominant commensal enteric bacteria isolated from the gut of healthy Indians. Our study revealed that like pathogenic bacteria, enteric commensals are also multidrug-resistant. The genes encoding antibiotic resistance are physically linked with MGEs and could disseminate vertically to the progeny and laterally to the distantly related microbial species. Consequently, the AMR genes present in the chromosome of commensal gut bacteria could be a potential source of resistance functions for other enteric pathogens.


Assuntos
Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Fenótipo , Simbiose , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Elementos de DNA Transponíveis/genética , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Transferência Genética Horizontal/genética , Genoma Bacteriano , Genótipo , Humanos , Sequências Repetitivas Dispersas/genética , Metagenoma/genética , Testes de Sensibilidade Microbiana , Transformação Genética/genética , Vibrio cholerae/genética , Sequenciamento Completo do Genoma
17.
Mol Biol Rep ; 46(3): 3009-3017, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859449

RESUMO

Phosphinothricin acetyltransferase gene (pat) is an important selectable marker and also a key herbicide trait gene in several commercial products. In maize, the transformation frequency (TF) using pat as a selectable marker is the lowest among the commonly used marker options including epsps, pmi or ppo. Low pat transformation efficiency can become a major bottleneck in our ability to efficiently produce large numbers of events, especially for large molecular stack vectors with multiple trait gene cassettes. The root cause of the lower efficiency of pat in maize is not well understood and it is possible that the causes are multifaceted, including maize genotype, pat marker cassette, trait gene combinations and selection system. In this work we have identified a new variant of pat gene through codon optimization that consistently produced a higher transformation frequency (> 2x) than an old version of the pat gene that has codons optimized for expression in dicot plants. The level of PAT protein in all 16 constructs was also found multifold higher (up to 40 fold) over that of the controls. All of the T0 low copy transgenic plants generated from the 16 different constructs showed excellent tolerance to ammonium glufosinate herbicide spray tests at 4x and 8x recommended field application rates (1x = 595 g active ingredient (ai)/hectare of ammonium glufosinate) in the greenhouse.


Assuntos
Acetiltransferases/genética , Transformação Genética/genética , Zea mays/genética , Acetiltransferases/metabolismo , Aminobutiratos , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Herbicidas , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética
18.
Mol Biol Rep ; 46(2): 1845-1853, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707418

RESUMO

Wheat is the most widely grown staple food crop in the world and accounts for dietary needs of more than 35% of the human population. Current status of transgenic wheat development is slow all over the world due to the lack of a suitable transformation system. In the present study, an efficient and reproducible Agrobacterium-mediated transformation system in bread wheat (Triticum aestivum L.) is established. The mature and immature embryos of six recently released high yielding spring bread wheat genotypes were used to standardize various parameters using Agrobacterium tumefaciens strain EHA105 harbouring binary vector pCAMBIA3301 having gus and bar as marker genes. The optimum duration for embryo pre-culture, inoculation time and co-cultivation were 2 days, 30 min and 48 h, respectively. The bacterial inoculum concentration of OD of 1 at 600 nm showed 67.25% transient GUS expression in the histochemical GUS assay. The filter paper based co-cultivation limits the Agrobacterium overgrowth and had 82.3% explants survival rate whereas medium based strategy had 22.7% explants survival only. The medium having picloram 4 mg/l along with antibiotics (cefotaxime 500 mg/l and timentin 300 mg/l) was found best suitable for initial week callus induction. The standardized procedure gave overall 14.9% transformation efficiency in immature embryos and 9.8% in mature embryos and confirmed by gene-specific and promoter-specific PCR and southern analysis. These results indicate that the developed Agrobacterium-mediated transformation system is suitable for diverse wheat genotypes. The major obstacle for the implication of the CRISPR-based genome editing techniques is the non-availability of a suitable transformation system. Thus, the present system can be exploited to deliver the T-DNA into the wheat genome for CRISPR-based target modifications and transgene insertions.


Assuntos
Agrobacterium tumefaciens/genética , Transformação Genética/genética , Triticum/genética , Agricultura/métodos , Agrobacterium/genética , Agrobacterium/metabolismo , Agrobacterium tumefaciens/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Engenharia Genética/métodos , Marcadores Genéticos , Plantas Geneticamente Modificadas/genética , Poaceae/genética , Regiões Promotoras Genéticas/genética , Sementes/genética , Transformação Genética/fisiologia , Transgenes , Triticum/crescimento & desenvolvimento
19.
Plant Cell Rep ; 38(7): 825-833, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31139894

RESUMO

Recently, plants have emerged as a lucrative alternative system for the production of recombinant proteins, as recombinant proteins produced in plants are safer and cheaper than those produced in bacteria and animal cell-based production systems. To obtain high yields in plants, recombinant proteins are produced in chloroplasts using different strategies. The first strategy is based on chloroplast transformation, followed by gene expression and translation in chloroplasts. This has proven to be a powerful approach for the production of proteins at high levels. The second approach is based on nuclear transformation, followed by post-translational import of proteins from the cytosol into chloroplasts. In the nuclear transformation approach, foreign genes are stably integrated into the nuclear genome or transiently expressed in the nucleus by non-integrating T-DNA. Although this approach also has great potential for protein production at high levels, it has not been thoroughly investigated. In this review, we focus on nuclear transformation-based protein expression and its subsequent sequestration in chloroplasts, and summarize the different strategies used for high-level production of recombinant proteins. We also discuss future directions for further improvements in protein production in chloroplasts through nuclear transformation-based gene expression.


Assuntos
Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformação Genética/genética
20.
Plant Cell Rep ; 38(5): 577-586, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30758711

RESUMO

KEY MESSAGE: We developed a novel Agrobacterium-mediated anther transformation for Wucai in planta, and in this procedure, the male germ line was the predominant target. Wucai (Brassica campestris L.), a variant of non-heading Chinese cabbage, is widely cultured in China and only improved by classic breeding methods. Here, a novel and efficient in planta Agrobacterium-mediated anther transformation method is developed based on the optimization of several factors that affect anther transformation. After optimization, transformation with the manual pollination application led to increased transient GUS expression in anthers (reaching 91.59%) and the transformation efficacies in planta (0.59-1.56% for four commercial cultivars). The stable integration and inheritance of the transgenes were further examined by molecular and genetic analyses. Three T2 transgenic lines presented a segregation ratio of 3:1, which was consistent with the Mendelian feature of a single dominant gene. In addition, the GUS histochemical assay and genetic crossing analysis revealed that the male germ line was the predominant target in this transformation. This optimized transformation system could provide a useful tool for both the improvement of cultivar qualities and investigation of functional genes in Wucai.


Assuntos
Agrobacterium tumefaciens/genética , Brassica/genética , Brassica/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Transformação Genética/genética , Brassica/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polinização/genética , Polinização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA