RESUMO
African swine fever (ASF) is a highly contagious viral disease that affects domestic and wild pigs. The causative agent of ASF is African swine fever virus (ASFV), a large double-stranded DNA virus with a complex virion structure. Among the various proteins encoded by ASFV, A137R is a crucial structural protein associated with its virulence. However, the structure and molecular mechanisms underlying the functions of A137R remain largely unknown. In this study, we present the structure of A137R determined by cryogenic electron microscopy single-particle reconstruction, which reveals that A137R self-oligomerizes to form a dodecahedron-shaped cage composed of 60 polymers. The dodecahedron is literally equivalent to a T = 1 icosahedron where the icosahedral vertexes are located in the center of each dodecahedral facet. Within each facet, five A137R protomers are arranged in a head-to-tail orientation with a long N-terminal helix forming the edge through which adjacent facets stitch together to form the dodecahedral cage. Combining structural analysis and biochemical evidence, we demonstrate that the N-terminal domain of A137R is crucial and sufficient for mediating the assembly of the dodecahedron. These findings imply the role of A137R cage as a core component in the icosahedral ASFV virion and suggest a promising molecular scaffold for nanotechnology applications. IMPORTANCE: African swine fever (ASF) is a lethal viral disease of pigs caused by African swine fever virus (ASFV). No commercial vaccines and antiviral treatments are available for the prevention and control of the disease. A137R is a structural protein of ASFV that is associated with its virulence. The discovery of the dodecahedron-shaped cage structure of A137R in this study is of great importance in understanding ASFV pathogenicity. This finding sheds light on the molecular mechanisms underlying the functions of A137R. Furthermore, the dodecahedral cage formed by A137R shows promise as a molecular scaffold for nanoparticle vectors. Overall, this study provides valuable insights into the structure and function of A137R, contributing to our understanding of ASFV and potentially opening up new avenues for the development of vaccines or treatments for ASF.
Assuntos
Vírus da Febre Suína Africana , Suínos , Proteínas Estruturais Virais , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/ultraestrutura , Microscopia Crioeletrônica , Relação Estrutura-Atividade , Suínos/virologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura , VirulênciaRESUMO
African swine fever virus (ASFV), the cause of a highly contagious hemorrhagic and fatal disease of domestic pigs, has a complex multilayer structure. The inner capsid of ASFV located underneath the inner membrane enwraps the genome-containing nucleoid and is likely the assembly of proteolytic products from the virally encoded polyproteins pp220 and pp62. Here, we report the crystal structure of ASFV p150â³NC, a major middle fragment of the pp220 proteolytic product p150. The structure of ASFV p150â³NC contains mainly helices and has a triangular plate-like shape. The triangular plate is approximately 38 Å in thickness, and the edge of the triangular plate is approximately 90 Å long. The structure of ASFV p150â³NC is not homologous to any of the known viral capsid proteins. Further analysis of the cryo-electron microscopy maps of the ASFV and the homologous faustovirus inner capsids revealed that p150 or the p150-like protein of faustovirus assembles to form screwed propeller-shaped hexametric and pentametric capsomeres of the icosahedral inner capsids. Complexes of the C terminus of p150 and other proteolytic products of pp220 likely mediate interactions between the capsomeres. Together, these findings provide new insights into the assembling of ASFV inner capsid and provide a reference for understanding the assembly of the inner capsids of nucleocytoplasmic large DNA viruses (NCLDV). IMPORTANCE African swine fever virus has caused catastrophic destruction to the pork industry worldwide since it was first discovered in Kenya in 1921. The architecture of ASFV is complicated, with two protein shells and two membrane envelopes. Currently, mechanisms involved in the assembly of the ASFV inner core shell are less understood. The structural studies of the ASFV inner capsid protein p150 performed in this research enable the building of a partial model of the icosahedral ASFV inner capsid, which provides a structural basis for understanding the structure and assembly of this complex virion. Furthermore, the structure of ASFV p150â³NC represents a new type of fold for viral capsid assembly, which could be a common fold for the inner capsid assembly of nucleocytoplasmic large DNA viruses (NCLDV) and would facilitate the development of vaccine and antivirus drugs against these complex viruses.
Assuntos
Vírus da Febre Suína Africana , Capsídeo , Modelos Moleculares , Montagem de Vírus , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/ultraestrutura , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Sus scrofa , Cristalografia por Raios X , Estrutura Terciária de ProteínaRESUMO
IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Proteínas de Membrana , Nucleotídeos Cíclicos , Suínos , Proteínas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/patogenicidade , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/antagonistas & inibidores , Nucleotídeos Cíclicos/metabolismo , Suínos/imunologia , Suínos/virologia , Vacinas Atenuadas/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Interações entre Hospedeiro e MicrorganismosRESUMO
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), which is a devastating pig disease threatening the global pork industry. However, currently, no commercial vaccines are available. During the pig immune response, major histocompatibility complex class I (MHC-I) molecules select viral peptide epitopes and present them to host cytotoxic T lymphocytes, thereby playing critical roles in eliminating viral infections. Here, we screened peptides derived from ASFV and determined the molecular basis of ASFV-derived peptides presented by the swine leukocyte antigen 1*0101 (SLA-1*0101). We found that peptide binding in SLA-1*0101 differs from the traditional mammalian binding patterns. Unlike the typical B and F pockets used by the common MHC-I molecule, SLA-1*0101 uses the D and F pockets as major peptide anchor pockets. Furthermore, the conformationally stable Arg114 residue located in the peptide-binding groove (PBG) was highly selective for the peptides. Arg114 draws negatively charged residues at positions P5 to P7 of the peptides, which led to multiple bulged conformations of different peptides binding to SLA-1*0101 and creating diversity for T cell receptor (TCR) docking. Thus, the solid Arg114 residue acts as a "mooring stone" and pulls the peptides into the PBG of SLA-1*0101. Notably, the T cell recognition and activation of p72-derived peptides were verified by SLA-1*0101 tetramer-based flow cytometry in peripheral blood mononuclear cells (PBMCs) of the donor pigs. These results refresh our understanding of MHC-I molecular anchor peptides and provide new insights into vaccine development for the prevention and control of ASF. IMPORTANCE The spread of African swine fever virus (ASFV) has caused enormous losses to the pork industry worldwide. Here, a series of ASFV-derived peptides were identified, which could bind to swine leukocyte antigen 1*0101 (SLA-1*0101), a prevalent SLA allele among Yorkshire pigs. The crystal structure of four ASFV-derived peptides and one foot-and-mouth disease virus (FMDV)-derived peptide complexed with SLA-1*0101 revealed an unusual peptide anchoring mode of SLA-1*0101 with D and F pockets as anchoring pockets. Negatively charged residues are preferred within the middle portion of SLA-1*0101-binding peptides. Notably, we determined an unexpected role of Arg114 of SLA-1*0101 as a "mooring stone" which pulls the peptide anchoring into the PBG in diverse "M"- or "n"-shaped conformation. Furthermore, T cells from donor pigs could activate through the recognition of ASFV-derived peptides. Our study sheds light on the uncommon presentation of ASFV peptides by swine MHC-I and benefits the development of ASF vaccines.
Assuntos
Vírus da Febre Suína Africana/química , Arginina/química , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Vírus da Febre Suína Africana/imunologia , Animais , Apresentação de Antígeno , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica , Suínos , Linfócitos T Citotóxicos/imunologiaRESUMO
African swine fever (ASF) is an acute, hemorrhagic, and highly contagious disease caused by African swine fever virus (ASFV). The mortality rate of acute infection up to 100% have posed an unprecedented challenge of the swine industry. Currently no commercial antiviral drug is available for the control and treatment of ASFV. The structural resolution of ASFV virions reveals the details of ASFV morphogenesis, providing a new perspective for the research and promotion of the development of ASFV vaccines. Although the architecture of ASFV have been solved via cryo-EM, the structural details of four of the five viral layers remain unclear (except the outer capsid). In this study, we resolved the crystal structure of the ASFV core shell protein p15. The secondary structural elements of a protomer include four α-helix structures and six antiparallel ß-strands. Further analysis revealed that ASFV p15 forms disulfide-linked trimers between the Cys9 from one protomer and Cys30 from other protomer. Additionally, the nucleic acid-binding property was characterized by electrophoretic mobility shift assay. Two critical amino acid Lys10 and Lys39 have been identified which is essential to the nucleic acid-binding affinity of ASFV p15. Together, these findings may provide new insight into antiviral drug development.
Assuntos
Vírus da Febre Suína Africana/fisiologia , Proteínas Virais/química , Vírus da Febre Suína Africana/química , Cristalização , DNA/metabolismo , Multimerização Proteica , Proteínas Virais/fisiologia , Montagem de VírusRESUMO
The DNA polymerase from african swine fever virus (ASFV Pol X), lacking both 8 kDa and thumb domains, is the smallest enzyme featuring competence in DNA extension. Here we show that ASFV Pol X features poor filling activity of DNA gaps consisting of 15 bases, and exerts a more efficient action at the expense of DNA substrates containing a recessed end of equal length. We also show that shortening the recessed end of DNA substrates decreases the rate of DNA elongation catalysed by ASFV Pol X. Finally, by means of stopped-flow experiments we were able to determine that DNA binding is a step responsible for restraining the efficiency of ASFV Pol X catalytic action.
Assuntos
Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/enzimologia , Animais , DNA Viral/química , DNA Polimerase Dirigida por DNA/química , Modelos Moleculares , Especificidade por Substrato , Suínos/virologia , Proteínas Virais/químicaRESUMO
African Swine Fever Virus (ASFV) is an enveloped double-stranded DNA icosahedral virus that causes the devastating hemorrhagic fever of pigs. ASFV infections severely impact swine production and cause an enormous economic loss, but no effective vaccine and therapeutic regimen is available. pA151R is a non-structural protein of ASFV, which is expressed at both early and late stages of viral infection. Significantly, pA151R may play a key role in ASFV replication and virus assembly as suppressing pA151R expression can reduce virus replication. However, little is known about the functional and structural mechanisms of pA151R because it shares a very low sequence identity to known structures. It was proposed that pA151R might participate in the redox pathway owing to the presence of a thioredoxin active site feature, the WCTKC motif. In this study, we determined the crystal structure of pA151R. Based on the crystal structure, we found that pA151R comprises of a central five-stranded ß-sheet packing against two helices on one side and an incompact C-terminal region containing the WCTKC motif on the other side. Notably, two cysteines in the WCTKC motif, an additional cysteine C116 from the ß7-ß8 loop together with ND1 of H109 coordinate a Zn2+ ion to form a Zn-binding motif. These findings suggest that the structure of pA151R is significantly different from that of typical thioredoxins. Our structure should provide molecular insights into the understanding of functional and structural mechanisms of pA151R from ASFV and shall benefit the development of prophylactic and therapeutic anti-ASFV agents.
Assuntos
Vírus da Febre Suína Africana/química , Proteínas não Estruturais Virais/química , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Genes Virais , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática , Homologia Estrutural de Proteína , Sus scrofa , Suínos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologiaRESUMO
A dogma for DNA polymerase catalysis is that the enzyme binds DNA first, followed by MgdNTP. This mechanism contributes to the selection of correct dNTP by Watson-Crick base pairing, but it cannot explain how low-fidelity DNA polymerases overcome Watson-Crick base pairing to catalyze non-Watson-Crick dNTP incorporation. DNA polymerase X from the deadly African swine fever virus (Pol X) is a half-sized repair polymerase that catalyzes efficient dG:dGTP incorporation in addition to correct repair. Here we report the use of solution structures of Pol X in the free, binary (Pol X:MgdGTP), and ternary (Pol X:DNA:MgdGTP with dG:dGTP non-Watson-Crick pairing) forms, along with functional analyses, to show that Pol X uses multiple unprecedented strategies to achieve the mutagenic dG:dGTP incorporation. Unlike high fidelity polymerases, Pol X can prebind purine MgdNTP tightly and undergo a specific conformational change in the absence of DNA. The prebound MgdGTP assumes an unusual syn conformation stabilized by partial ring stacking with His115. Upon binding of a gapped DNA, also with a unique mechanism involving primarily helix αE, the prebound syn-dGTP forms a Hoogsteen base pair with the template anti-dG. Interestingly, while Pol X prebinds MgdCTP weakly, the correct dG:dCTP ternary complex is readily formed in the presence of DNA. H115A mutation disrupted MgdGTP binding and dG:dGTP ternary complex formation but not dG:dCTP ternary complex formation. The results demonstrate the first solution structural view of DNA polymerase catalysis, a unique DNA binding mode, and a novel mechanism for non-Watson-Crick incorporation by a low-fidelity DNA polymerase.
Assuntos
Vírus da Febre Suína Africana/enzimologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/metabolismo , Animais , Pareamento de Bases , DNA/química , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Suínos/virologiaRESUMO
African swine fever (ASF) causes high mortality in pigs and threatens global swine production. There is still a lack of therapeutics available, with two vaccines under scrutiny and no approved small-molecule drugs. Eleven (11) viral proteins were used to identify potential antivirals in in silico screening of secondary metabolites (127) from Chlorella spp. The metabolites were screened for affinity and binding selectivity. High-scoring compounds were assessed through in silico ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) predictions, compared to structurally similar drugs, and checked for off-target docking with prepared swine receptors. Molecular dynamics (MD) simulations determined binding stability while binding energy was measured in Molecular Mechanics - Generalized Born Surface Area (MMGBSA) or Poisson-Boltzmann Surface Area (MMPBSA). Only six (6) compounds passed until MD analyses, of which five (5) were stable after 100 ns of MD runs. Of these five compounds, only three had binding affinities that were comparable to or stronger than controls. Specifically, phytosterols 24,25-dihydrolanosterol and CID 4206521 that interact with the RNA capping enzyme (pNP868R), and ergosterol which bound to the Erv-like thioreductase (pB119L). The compounds identified in this study can be used as a theoretical basis for in vitro screening to develop potent antiviral drugs against ASFV.
Assuntos
Vírus da Febre Suína Africana , Antivirais , Chlorella , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/química , Antivirais/farmacologia , Antivirais/química , Animais , Chlorella/química , Suínos , Proteínas Virais/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Avaliação Pré-Clínica de MedicamentosRESUMO
The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections. In this study, a comprehensive approach involving pharmacophore-based inhibitor screening, coupled with biochemical and biophysical analyses, were implemented to identify, characterize, and validate potential inhibitors targeting AsfvPolX. The constructed pharmacophore model, Phar-PolX-S, demonstrated efficacy in identifying a potent inhibitor, D-132 (IC50 = 2.8 ± 0.2 µM), disrupting the formation of the AsfvPolX-DNA complex. Notably, D-132 exhibited strong binding to AsfvPolX (KD = 6.9 ± 2.2 µM) through a slow-on-fast-off binding mechanism. Employing molecular modeling, it was elucidated that D-132 predominantly binds in-between the palm and finger domains of AsfvPolX, with crucial residues (R42, N48, Q98, E100, F102, and F116) identified as hotspots for structure-based inhibitor optimization. Distinctively characterized by a 1,2,5,6-tetrathiocane with modifications at the 3 and 8 positions involving ethanesulfonates, D-132 holds considerable promise as a lead compound for the development of innovative agents to combat ASFV infections.
Assuntos
Vírus da Febre Suína Africana , Antivirais , DNA Polimerase Dirigida por DNA , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/química , Animais , Antivirais/farmacologia , Antivirais/química , Febre Suína Africana/virologia , Suínos , Descoberta de Drogas , Replicação Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica , Simulação de Acoplamento Molecular , DNA Viral/genética , FarmacóforoRESUMO
One of the most characteristic features of African swine fever virus gene expression is its use of two polyproteins, pp220 and pp62, to produce several structural proteins that account for approximately 32% of the total protein virion mass. Equimolecular amounts of these proteins are the major components of the core shell, a thick protein layer that lies beneath the inner envelope, surrounding the viral nucleoid. Polyprotein pp220, which is located immediately underneath the internal envelope, is essential for the encapsidation of the core of the viral particle. In its absence, the infection produces essentially coreless particles. In this study we analyzed, by means of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible virus, the role of polyprotein pp62 in virus assembly. Polyprotein pp62 is indispensable for viral replication. The repression of polyprotein pp62 expression does not alter late gene expression or the proteolytic processing of the polyprotein pp220. However, it has a profound impact on the subcellular localization of polyprotein pp220. Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle. Its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles. Immunoelectron microscopy analysis showed a clear correlation between the amount of polyprotein pp62, the quantity of polyprotein pp220, and the state of development of the core, suggesting that the complete absence of polyprotein pp62 during morphogenesis would produce a homogenous population of empty particles.
Assuntos
Vírus da Febre Suína Africana/fisiologia , Poliproteínas/fisiologia , Proteínas Virais/fisiologia , Montagem de Vírus , Vírus da Febre Suína Africana/química , Regulação Viral da Expressão Gênica , Proteínas Estruturais Virais , Vírion , Replicação ViralRESUMO
Three discrete regions of the African swine fever virus (ASFV) were analysed in the genomes of a wide range of isolates collected from wild and domestic pigs in Sardinia, over a 31-year period (1978-2009). The analysis was conducted by genotyping based on sequence data from three single copy ASF genes. The E183L gene encoding the structural protein p54 and part of the gene encoding the p72 protein were used to delineate genotypes, before intra-genotypic resolution of viral relationships by analysis of tetramer amino acid repeats within the hypervariable central variable region (CVR) of the B602L gene. The data revealed that these isolates did not show significant variation in their p72 and p54 sequence when compared between different isolates showing a remarkable genetic stability of these genome regions. In particular, the phylogeny revealed that all the Sardinian isolates belong to the same largest and most homogeneous p72 genotype I together with viruses from Europe, South America, the Caribbean and West Africa, and p54 genotype Ia which comprises viruses from Europe and America. The analysis of B602L gene revealed a minor difference in the number of tetramer repeats, placing the Sardinian isolates into two clusters, accordingly to their temporal distribution, namely sub-group III and sub-group X, this latter showing a deletion of 12 tetramer repeats located in the centre of the array. The genetic variation of this fragment suggests that one sub-group could be derived from the other supporting the hypothesis of a single introduction of ASFV in Sardinia.
Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , Variação Genética , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/classificação , Sequência de Aminoácidos , Animais , Genótipo , Itália/epidemiologia , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Sus scrofa/virologia , Suínos , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
African swine fever virus (ASFV), the causative pathogen of the recent ASF epidemic, is a highly contagious double-stranded DNA virus. Its genome is in the range of 170~193 kbp and encodes 68 structural proteins and over 100 non-structural proteins. Its high pathogenicity strains cause nearly 100% mortality in swine. Consisting of four layers of protein shells and an inner genome, its structure is obviously more complicated than many other viruses, and its multi-layered structures play different kinds of roles in ASFV replication and survival. Each layer possesses many proteins, but very few of the proteins have been investigated at a structural level. Here, we concluded all the ASFV proteins whose structures were unveiled, and explained their functions from the view of structures. Those structures include ASFV AP endonuclease, dUTPases (E165R), pS273R protease, core shell proteins p15 and p35, non-structural proteins pA151R, pNP868R (RNA guanylyltransferase), major capsid protein p72 (gene B646L), Bcl-2-like protein A179L, histone-like protein pA104R, sulfhydryl oxidase pB119L, polymerase X and ligase. These novel structural features, diverse functions, and complex molecular mechanisms promote ASFV to escape the host immune system easily and make this large virus difficult to control.
Assuntos
Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/genética , Animais , Cristalografia por Raios X , Genoma Viral , Modelos Moleculares , Suínos , Proteínas Virais/genéticaRESUMO
Nucleocytoplasmic large DNA viruses (NCLDVs) are a group of large viruses that infect a wide range of hosts, from animals to protists. These viruses are grouped together in NCLDV based on genomic sequence analyses. They share a set of essential genes for virion morphogenesis and replication. Most NCLDVs generally have large physical sizes while their morphologies vary in different families, such as icosahedral, brick, or oval shape, raising the question of the possible regulatory factor on their morphogenesis. The capsids of icosahedral NCLDVs are assembled from small building blocks, named capsomers, which are the trimeric form of the major capsid proteins. Note that the capsids of immature poxvirus are spherical even though they are assembled from capsomers that share high structural conservation with those icosahedral NCLDVs. The recently published high resolution structure of NCLDVs, Paramecium bursaria Chlorella virus 1 and African swine fever virus, described the intensive network of minor capsid proteins that are located underneath the capsomers. Among these minor proteins is the elongated tape measure protein (TmP) that spans from one icosahedral fivefold vertex to another. In this study, we focused on the critical roles that TmP plays in the assembly of icosahedral NCLDV capsids, answering a question raised in a previously proposed spiral mechanism. Interestingly, basic local alignment search on the TmPs showed no significant hits in poxviruses, which might be the factor that differentiates poxviruses and icosahedral NCLDVs in their morphogenesis.
Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Vírus de DNA/química , Vírus de DNA/metabolismo , Montagem de Vírus , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/metabolismo , Animais , Chlorella/virologia , SuínosRESUMO
Samples collected from wild and domestic suids in Nigeria, over a 3-year period (2003-2006), were evaluated for African swine fever (ASF) virus genome presence by targeting three discrete genome regions, namely the 478-bp C-terminal p72 gene region advocated for genotype assignment, a 780-bp region spanning the 5'-ends of the pB125R and pB646L (p72) genes and the hypervariable central variable region (CVR) encoded within the 9RL ORF (pB602L). ASF virus (ASFV) presence was confirmed in 23 of the 26 wild and domestic pigs evaluated. No evidence of ASF infection was found in two warthogs from Adamawa State; however, one bushpig from Plateau State was positive. Nucleotide sequences of the 478-bp and 780-bp amplicons were identical across all ASFV-positive samples sequenced. However, five discrete CVR variants were recovered, bringing the total number identified to date, from Nigeria, to six. The largest of the CVR variants, termed 'Tet-36' was identical to a virus causing outbreaks in neighbouring Benin in 1997, indicating a prolonged persistence of this virus type in Nigeria. Co-circulation of three tetramer types (Tet-36, Tet-27 and Tet-20) was found in Plateau State in July 2004, whilst in Benue State, two tetramer types (Tet-20 and Tet-21) were present in August 2005. Despite simultaneous field presence, individual co-infection was not observed. This study has reaffirmed the epidemiological utility of the CVR genome region for distinguishing between geographically and temporally constrained genotype I viruses, and has revealed the presence of multiple ASFV variants in Nigeria.
Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Variação Genética , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/classificação , Sequência de Aminoácidos , Animais , Genoma Viral , Dados de Sequência Molecular , Nigéria/epidemiologia , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Suínos , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
We have developed a novel detection system that couples clustered regularly interspaced short palindromic repeat-Cas recognition of target sequences, Cas-mediated nucleic acid probe cleavage, and quantum dots as highly sensitive reporter molecules for simple detection of viral nucleic acid targets. After target recognition and Cas-mediated cleavage of biotinylated ssDNA probe molecules, the probe molecules are bound to magnetic beads. A complementary ssDNA oligonucleotide quantum dot conjugate is then added, which only hybridizes to uncleaved probes on the magnetic beads. After separating hybridized quantum dots, the collected supernatant is illuminated by a portable ultraviolet flashlight, and it provides a simple "Yes-or-No" nucleic acid detection answer. By using a DNA target matching part of the African swine fever virus, detection limits of â¼0.5 and â¼1.25 nM are achieved in buffer and porcine plasma, respectively. The positive samples are readily confirmed by visual inspection, completely avoiding the need for complicated devices and instruments. This work establishes the feasibility of a simple assay for nucleic acid screening in both hospitals and point-of-care settings.
Assuntos
Vírus da Febre Suína Africana/química , DNA Viral/análise , Pontos Quânticos/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Colorimetria , Sondas de DNA/química , DNA Viral/genética , Fenômenos Magnéticos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
In the absence of a vaccine for African swine fever virus (ASFV), diagnostic tools are critical for early detection and implementation of control measures. Along with other immunogenic proteins, p54 is a good serological target for conducting ASF detection and surveillance. In this study, a panel of 12 mouse monoclonal antibodies (mAbs) was prepared against a baculovirus-expressed p54(60-178) polypeptide. Further screening showed that five mAbs were positive for reactivity against ASFV-infected cells and recombinant p54 proteins. Mapping studies using five polypeptides and 12 oligopeptides, showed that mAb #154-1 recognized a conserved polypeptide sequence, p54(65-75), and was placed into Group 1. Mabs #143-1 and #7 recognized a region covered by p54(93-113) and were placed into Group 2. Group 3 consisted of mAbs #101 and #117, which recognized p54(118-127). Sera from pigs infected with the low virulent OURT 88/3 strain recognized the same p54 region covered by the Group 3 mAbs. When tested in a neutralization format, only mAb #143-1 showed neutralization activity above background. Together, the results identify important antigenic and immunogenic regions located on p54, which provide new tools for improving ASFV diagnostics.
Assuntos
Vírus da Febre Suína Africana/imunologia , Anticorpos Monoclonais/imunologia , Mapeamento de Epitopos/métodos , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Baculoviridae/genética , Baculoviridae/imunologia , Chlorocebus aethiops , Camundongos , Suínos , Células VeroRESUMO
Among the structural proteins that compose the virion of African swine fever virus (ASFV), p30 is one of the most immunogenic proteins and is produced during early stage of ASFV infection. These two characteristics make p30 a good target for diagnostic assays to detect ASFV infection. In this study, we describe a panel of newly generated p30-specific monoclonal antibodies (mAbs). The reactivity of these mAbs was confirmed by immunoprecipitation and Western blot analysis in Vero cells infected with alphavirus replicon particles that express p30 (RP-p30). Furthermore, this panel of mAbs recognized ASFV strains BA71 V (Genotype I) and Georgia/2007 (Genotype II) in immunofluorescence assays on virus-infected Vero cells and swine macrophages, respectively. These mAbs also detected p30 expression by immunohistochemistry in tissue samples from ASFV-infected pigs. Epitope mapping revealed that a selected mAb from the panel recognized a linear epitope within the 32-amino acid region, 61-93. In contrast, two of the mAbs recognize the C-terminal region of the protein, which is highly hydrophilic, enriched in glutamic acid residues, and predicted to contain an intrinsically disordered protein region (IDPR). This panel of mAbs and mAb-based diagnostic assays potentially represent valuable tools for ASFV detection, surveillance and disease control.
Assuntos
Vírus da Febre Suína Africana/química , Febre Suína Africana/diagnóstico , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Alphavirus/genética , Alphavirus/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Antígenos Virais/imunologia , Chlorocebus aethiops , Epitopos/química , Epitopos/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Suínos , Células VeroRESUMO
African swine fever virus (ASFV) infection is fatal in domesticated pigs, with a mortality rate approaching 100%. This may result in economic losses and threats to food security. Currently, there are no approved vaccines or antiviral therapies for ASFV. Therefore, in this study, we evaluated congocidine congeners and a tris-benzimidazole as potential inhibitors of ASFV transcription using an in silico approach. We applied redocking of congocidine and docking of its congeners and a tris-benzimidazole to a receptor containing B-DNA with AT-motifs as a target to mimic conserved ASFV late gene promoters. Subsequently, the binding scores of DNA-ligand docked complexes were evaluated and their binding affinity was estimated. Molecular dynamics (MD) simulation was then used to assess ligand behavior within the minor groove. From our results, it is evident the less toxic congocidine congeners and tris-benzimidazole could dock to AT-rich regions significantly. Additionally, the predicted binding affinities had suitable values comparable to other experimentally determined minor groove binders, MD simulation of the docked DNA-ligand complexes and subsequent molecular trajectory visualization further showed that the ligands remained embedded in the minor groove during the time course of simulation, indicating that these ligands may have potential applications in abrogating ASFV transcription.
Assuntos
Vírus da Febre Suína Africana/química , Febre Suína Africana/tratamento farmacológico , Netropsina/química , Replicação Viral/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/patogenicidade , Animais , Simulação por Computador , Netropsina/uso terapêutico , Suínos/virologia , Proteínas Virais/genéticaRESUMO
African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development.