Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002157, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319262

RESUMO

Numerous, diverse plant viruses encode movement proteins (MPs) that aid the virus movement through plasmodesmata, the plant intercellular channels. MPs are essential for virus spread and propagation in distal tissues, and several unrelated MPs have been identified. The 30K superfamily of MPs (named after the molecular mass of tobacco mosaic virus MP, the classical model of plant virology) is the largest and most diverse MP variety, represented in 16 virus families, but its evolutionary origin remained obscure. Here, we show that the core structural domain of the 30K MPs is homologous to the jelly-roll domain of the capsid proteins (CPs) of small RNA and DNA viruses, in particular, those infecting plants. The closest similarity was observed between the 30K MPs and the CPs of the viruses in the families Bromoviridae and Geminiviridae. We hypothesize that the MPs evolved via duplication or horizontal acquisition of the CP gene in a virus that infected an ancestor of vascular plants, followed by neofunctionalization of one of the paralogous CPs, potentially through the acquisition of unique N- and C-terminal regions. During the subsequent coevolution of viruses with diversifying vascular plants, the 30K MP genes underwent explosive horizontal spread among emergent RNA and DNA viruses, likely permitting viruses of insects and fungi that coinfected plants to expand their host ranges, molding the contemporary plant virome.


Assuntos
Vírus de Plantas , Vírus do Mosaico do Tabaco , Proteínas do Capsídeo/genética , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plantas/genética , RNA , Nicotiana/genética
2.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709860

RESUMO

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Assuntos
Proteínas do Capsídeo , RNA Mensageiro , Vírus do Mosaico do Tabaco , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Vírus do Mosaico do Tabaco/genética , Proteínas do Capsídeo/genética , Bromovirus/genética , Nanopartículas/química , Humanos , Feminino , Vacinas contra COVID-19/administração & dosagem , Vírion/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Lipossomos
3.
Luminescence ; 39(6): e4804, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859763

RESUMO

Early and sensitive detection of tobacco mosaic virus (TMV) is of great significance for improving crop yield and protecting germplasm resources. Herein, we constructed a novel fluorescence sensor to detect TMV RNA (tRNA) through double strand specific nuclease (DSN) cycle and activator regenerative electron transfer atom transfer radical polymerization (ARGET ATRP) dual signal amplification strategy. The hairpin DNA complementarily paired with tRNA was used as a recognition unit to specifically capture tRNA. By the double-stranded DNA hydrolyzed with DSN, tRNA is released to open more hairpin DNA, and more complementary DNA (cDNA) is bound to the surface of the magnetic beads (MBs) to achieve the first amplification. After binding with the initiator, the cDNA employed ARGET ATRP to attach more fluorescent signal molecules to the surface of MBs, thus achieving the second signal amplification. Under the optimal experimental conditions, the logarithm of fluorescence intensity versus tRNA concentration showed a good linear relationship in the range of 0.01-100 pM, with a detection limit of 1.03 fM. The limit of detection (LOD) was calculated according to LOD = 3 N/S. Besides, the sensor showed good reproducibility and stability, which present provided new method for early and highly sensitive detection for plant viruses.


Assuntos
RNA Viral , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/química , RNA Viral/análise , Fluorescência , Limite de Detecção , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Espectrometria de Fluorescência
4.
Plant Biotechnol J ; 21(3): 635-645, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511837

RESUMO

Molecular farming technology using transiently transformed Nicotiana plants offers an economical approach to the pharmaceutical industry to produce an array of protein targets including vaccine antigens and therapeutics. It can serve as a desirable alternative approach for those proteins that are challenging or too costly to produce in large quantities using other heterologous protein expression systems. However, since cost metrics are such a critical factor in selecting a production host, any system-wide modifications that can increase recombinant protein yields are key to further improving the platform and making it applicable for a wider range of target molecules. Here, we report on the development of a new approach to improve target accumulation in an established plant-based expression system that utilizes viral-based vectors to mediate transient expression in Nicotiana benthamiana. We show that by engineering the host plant to support viral vectors to spread more effectively between host cells through plasmodesmata, protein target accumulation can be increased by up to approximately 60%.


Assuntos
Vírus do Mosaico do Tabaco , Proteínas Recombinantes/genética , Plantas Geneticamente Modificadas/metabolismo , Vírus do Mosaico do Tabaco/genética , Nicotiana/genética , Transporte Proteico , Vetores Genéticos
5.
Mol Biol Rep ; 50(6): 5165-5176, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119416

RESUMO

BACKGROUND: Genome editing technology has become one of the excellent tools for precise plant breeding to develop novel plant germplasm. The Tobacco mosaic virus (TMV) is the most prominent pathogen that infects several Solanaceae plants, such as tobacco, tomato, and capsicum, which requires critical host factors for infection and replication of its genomic RNA in the host. The Tobamovirus multiplication (TOM) genes, such as TOM1, TOM2A, TOM2B, and TOM3, are involved in the multiplication of Tobamoviruses. TOM1 is a transmembrane protein necessary for efficient TMV multiplication in several plant species. The TOM genes are crucial recessive resistance genes that act against the tobamoviruses in various plant species. METHODS AND RESULTS: The single guided RNA (sgRNA) was designed to target the first exon of the NtTOM1 gene and cloned into the pHSE401 vector. The pHSE401-NtTOM1 vector was introduced into Agrobacterium tumefaciens strain LBA4404 and then transformed into tobacco plants. The analysis on T0 transgenic plants showed the presence of the hptII and Cas9 transgenes. The sequence analysis of the NtTOM1 from T0 plants showed the indels. Genotypic evaluation of the NtTOM1 mutant lines displayed the stable inheritance of the mutations in the subsequent generations of tobacco plants. The NtTOM1 mutant lines successfully conferred resistance to TMV. CONCLUSIONS: CRISPR/Cas genome editing is a reliable tool for investigating gene function and precision breeding across different plant species, especially the species in the Solanaceae family.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Vírus do Mosaico do Tabaco/genética , Sistemas CRISPR-Cas/genética , Nicotiana/genética , Tobamovirus/genética , Plantas Geneticamente Modificadas/genética , RNA
6.
Phytopathology ; 113(9): 1697-1707, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36916761

RESUMO

Host ranges of plant viruses are poorly known, as studies have focused on pathogenic viruses in crops and adjacent wild plants. High-throughput sequencing (HTS) avoids the bias toward plant-virus interactions that result in disease. Here we study the host ranges of tobamoviruses, important pathogens of crops, using HTS analyses of an extensive sample of plant communities in four habitats of a heterogeneous ecosystem. Sequences of 17 virus operational taxonomic units (OTUs) matched references in the Tobamovirus genus, eight had narrow host ranges, and five had wide host ranges. Regardless of host range, the OTU hosts belonged to taxonomically distant families, suggesting no phylogenetic constraints in host use associated with virus adaptation, and that tobamoviruses may be host generalists. The OTUs identified as tobacco mild green mosaic virus (TMGMV), tobacco mosaic virus (TMV), pepper mild mottle virus, and Youcai mosaic virus had the largest realized host ranges that occurred across habitats and exhibited host use unrelated to the degree of human intervention. This result is at odds with assumptions that contact-transmitted viruses would be more abundant in crops than in wild plant communities and could be explained by effective seed-, contact-, or pollinator-mediated transmission or by survival in the soil. TMGMV and TMV had low genetic diversity that was not structured according to habitat or host plant taxonomy, which indicated that phenotypic plasticity allows virus genotypes to infect new hosts with no need for adaptive evolution. Our results underscore the relevance of ecological factors in host range evolution, in addition to the more often studied genetic factors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Humanos , Especificidade de Hospedeiro , Ecossistema , Doenças das Plantas , Tobamovirus/genética , Vírus do Mosaico do Tabaco/genética , Plantas , Variação Genética
7.
Proc Natl Acad Sci U S A ; 117(6): 3114-3122, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988134

RESUMO

Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas , Malária Falciparum/imunologia , Plasmodium falciparum , Proteínas de Protozoários , Vírus do Mosaico do Tabaco/genética , Animais , Células HEK293 , Humanos , Imunogenicidade da Vacina , Macaca mulatta , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Engenharia de Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
8.
Plant J ; 106(4): 896-912, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33837606

RESUMO

An important aspect of plant-virus interaction is the way viruses dynamically move over long distances and how plant immunity modulates viral systemic movement. Salicylic acid (SA), a well-characterized hormone responsible for immune responses against virus, is activated through different transcription factors including TGA and WRKY. In tobamoviruses, evidence suggests that capsid protein (CP) is required for long-distance movement, although its precise role has not been fully characterized yet. Previously, we showed that the CP of Tobacco Mosaic Virus (TMV)-Cg negatively modulates the SA-mediated defense. In this study, we analyzed the impact of SA-defense mechanism on the long-distance transport of a truncated version of TMV (TMV ∆CP virus) that cannot move to systemic tissues. The study showed that the negative modulation of NPR1 and TGA10 factors allows the long-distance transport of TMV ∆CP virus. Moreover, we observed that the stabilization of DELLA proteins promotes TMV ∆CP systemic movement. We also characterized a group of genes, part of a network modulated by CP, involved in TMV ∆CP long-distance transport. Altogether, our results indicate that CP-mediated downregulation of SA signaling pathway is required for the virus systemic movement, and this role of CP may be linked to its ability to stabilize DELLA proteins.


Assuntos
Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Doenças das Plantas/virologia , Ácido Salicílico/imunologia , Transdução de Sinais , Vírus do Mosaico do Tabaco/fisiologia , Proteínas do Capsídeo/genética , Regulação para Baixo , Movimento , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/imunologia , Nicotiana/fisiologia , Vírus do Mosaico do Tabaco/genética
9.
Chembiochem ; 23(11): e202200040, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35320626

RESUMO

Tobacco mosaic virus (TMV) was the first virus to be discovered and it is now widely used as a tool for biological research and biotechnology applications. TMV particles can be decorated with functional molecules by genetic engineering or bioconjugation. However, this can destabilize the nanoparticles, and/or multiple rounds of modification may be necessary, reducing product yields and preventing the display of certain cargo molecules. To overcome these challenges, we used phage display technology and biopanning to isolate a TMV-binding peptide (TBPT25 ) with strong binding properties (IC50 =0.73 µM, KD =0.16 µM), allowing the display of model cargos via a single mixing step. The TMV-binding peptide is specific for TMV but does not recognize free coat proteins and can therefore be used to decorate intact TMV or detect intact TMV particles in crude plant sap.


Assuntos
Nanopartículas , Vírus do Mosaico do Tabaco , Biotecnologia , Engenharia Genética , Peptídeos/química , Nicotiana/genética , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo
10.
Chembiochem ; 23(18): e202200323, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35835718

RESUMO

Tobacco mild green mosaic virus (TMGMV) is a plant virus closely related to Tobacco mosaic virus (TMV), sharing many of its structural and chemical features. These rod-shaped viruses, comprised of 2130 identical coat protein subunits, have been utilized as nanotechnological platforms for a myriad of applications, ranging from drug delivery to precision agriculture. This versatility for functionalization is due to their chemically active external and internal surfaces. While both viruses are similar, they do exhibit some key differences in their surface chemistry, suggesting the reactive residue distribution on TMGMV should not overlap with TMV. In this work, we focused on the establishment and refinement of chemical bioconjugation strategies to load molecules into or onto TMGMV for targeted delivery. A combination of NHS, EDC, and diazo coupling reactions in combination with click chemistry were used to modify the N-terminus, glutamic/aspartic acid residues, and tyrosines in TMGMV. We report loading with over 600 moieties per TMGMV via diazo-coupling, which is a >3-fold increase compared to previous studies. We also report that cargo can be loaded to the solvent-exposed N-terminus and carboxylates on the exterior/interior surfaces. Mass spectrometry revealed the most reactive sites to be Y12 and Y72, both tyrosine side chains are located on the exterior surface. For the carboxylates, interior E106 (66.53 %) was the most reactive for EDC-propargylamine coupled reactions, with the exterior E145 accounting for >15 % reactivity, overturning previous assumptions that only interior glutamic acid residues are accessible. A deeper understanding of the chemical properties of TMGMV further enables its functionalization and use as a multifunctional nanocarrier platform for applications in medicine and precision farming.


Assuntos
Nicotiana , Vírus do Mosaico do Tabaco , Ácido Aspártico , Ácido Glutâmico , Subunidades Proteicas , RNA Viral/química , Solventes , Vírus do Mosaico do Tabaco/química , Vírus do Mosaico do Tabaco/genética , Tirosina
11.
Anal Biochem ; 655: 114834, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940299

RESUMO

Herein, an electroluminescence (ECL) biosensor was constructed by combining click chemistry with activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) to sensitively assay tobacco mosaic virus (TMV) RNA for the first time. First, hairpin DNA (hDNA) was self-assembled on the gold electrode surface through Au-S bonding. The hDNA hybridized with the tDNA to form tRNA/hDNA hybrids in the presence of TMV RNA (tRNA), so that the azide group labelled at the end of the hDNA was kept away from the electrode surface. Subsequently, the initiator for the ARGET-ATRP reaction was modified on the electrode surface by chemical bonds via click chemistry. Then, N-acryloxysuccinimide (NAS)-labelled polymer chains were successfully formed on the electrode surface by ARGET-ATRP. Under the optimized conditions, a good linear relationship existed with the ECL signal and the logarithm of tRNA concentration in the range of 0.1 pM-10 nM, and the limit of detection was 2.61 fM. In addition, this strategy can identify mismatched bases and performs well in recovery assays in real samples. For its high sensitivity, selectivity, simplicity and economy, the ECL biosensor shows great potential for practical applications.


Assuntos
Técnicas Biossensoriais , Vírus do Mosaico do Tabaco , Química Click , Polimerização , RNA , Vírus do Mosaico do Tabaco/genética
12.
Mol Biol Rep ; 49(1): 237-247, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705219

RESUMO

BACKGROUND: Early, precise and simultaneous identification of plant viruses is of great significance for preventing virus spread and reducing losses in agricultural yields. METHODS AND RESULTS: In this study, the identification of plant viruses from symptomatic samples collected from a cigar tobacco planting area in Deyang and a flue-cured tobacco planting area in Luzhou city, Sichuan Province, China, was conducted by deep sequencing of small RNAs (sRNAs) through an Illumina sequencing platform, and plant virus-specific contigs were generated based on virus-derived siRNA sequences. Additionally, sequence alignment and phylogenetic analysis were performed to determine the species or strains of these viruses. A total of 27930450, 21537662 and 28194021 clean reads were generated from three pooled samples, with a total of 105 contigs mapped to the closest plant viruses with lengths ranging from 34 ~ 1720 nt. The results indicated that the major viruses were potato virus Y, Chilli veinal mottle virus, tobacco vein banding mosaic virus, tobacco mosaic virus and cucumber mosaic virus. Subsequently, a fast and sensitive multiplex reverse transcription polymerase chain reaction assay was developed for the simultaneous detection of the most frequent RNA viruses infecting cigar and flue-cured tobacco in Sichuan. CONCLUSIONS: These results provide a theoretical basis and convenient methods for the rapid detection and control of viruses in cigar- and flue-cured tobacco.


Assuntos
Perfilação da Expressão Gênica/métodos , Nicotiana/virologia , Pequeno RNA não Traduzido/genética , RNA-Seq/métodos , Vírus/classificação , Cucumovirus/genética , Cucumovirus/isolamento & purificação , Cucumovirus/patogenicidade , Resistência à Doença , Evolução Molecular , Reação em Cadeia da Polimerase Multiplex , Filogenia , Folhas de Planta/genética , Folhas de Planta/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Potyvirus/patogenicidade , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Nicotiana/genética , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/isolamento & purificação , Vírus do Mosaico do Tabaco/patogenicidade , Vírus/genética , Vírus/isolamento & purificação
13.
Growth Factors ; 39(1-6): 37-44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35188043

RESUMO

Fibroblast growth factor (FGF) family has a wide range of metabolic processes. FGF21 exerts critical physiological functions in clinical application. This study aimed to explore a convenient and highly efficient approach for rhFGF21 expression using TMV-TES. Firstly, the vector pTTEV-GFP was constructed, followed by optimisation of the expression parameters in Nicotiana benthamiana. Then, the rhFGF21 encoding gene harbouring vector pTTEV-rhFGF21 was constructed. Agrobacterium-mediated vacuum infiltration was performed with the optimised parameters and the expression of rhFGF21 was confirmed by the immunoblotting analysis. ELISA revealed that the protein accumulation of rhFGF21 accounts for 0.11% of total soluble proteins. The biological activity was evaluated and the results suggested that tobacco-expressed rhFGF21 could stimulate the glucose uptake in swiss 3T3-L1 adipocytes, which was similar to the activity of commercial products, suggesting its native biological activity. Therefore, using TMV-TES to express rhFGF21 will be a feasible approach for the mass production of rhFGF21.


Assuntos
Fatores de Crescimento de Fibroblastos , Vírus do Mosaico do Tabaco , Células 3T3-L1 , Animais , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo
14.
Biomacromolecules ; 22(6): 2515-2523, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33886293

RESUMO

The self-assembly system of the rod-shaped tobacco mosaic virus (TMV) has been studied extensively for nanoscale applications. TMV coat protein assembly is modulated by intersubunit carboxylate groups whose electrostatic repulsion limits the assembly of virus rods without incorporating genomic RNA. To engineer assembly control into this system, we reprogrammed intersubunit carboxylate interactions to produce self-assembling coat proteins in the absence of RNA and in response to unique pH and ionic environmental conditions. Specifically, engineering a charge attraction at the intersubunit E50-D77 carboxylate group through a D77K substitution stabilized the coat proteins assembly into virus-like rods. In contrast, the reciprocal E50K modification alone did not confer virus-like rod assembly. However, a combination of R46G/E50K/E97G substitutions enabled virus-like rod assembly. Interestingly, the D77K substitution displays a unique pH-dependent assembly-disassembly profile, while the R46G/E50K/E97G substitutions confer a novel salt concentration dependency for assembly control. In addition, these unique environmentally controlled coat proteins allow for the directed assembly and disassembly of chimeric virus-like rods both in solution and on substrate-attached seed rods. Combined, these findings provide a controllable means to assemble functionally discrete virus-like rods for use in nanotechnology applications.


Assuntos
Nanotubos , Vírus do Mosaico do Tabaco , Proteínas do Capsídeo/genética , RNA Viral , Vírus do Mosaico do Tabaco/genética , Montagem de Vírus
15.
J Am Chem Soc ; 142(13): 5929-5932, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191463

RESUMO

Biomolecular assembly in biological systems is typically a complex dynamic process regulated by the exchange of molecular information between biomolecules such as proteins and nucleic acids. Here, we demonstrate a nucleic-acid-based system that can program the dynamic assembly process of viral proteins. Tobacco mosaic virus (TMV) genome-mimicking RNA is anchored on DNA origami nanostructures via hybridization with a series of DNA strands which also function as locks that prevent the packaging of RNA by the TMV proteins. The selective, sequential releasing of the RNA via toehold-mediated strand displacement allows us to program the availability of RNA and subsequently the TMV growth in situ. Furthermore, the programmable dynamic assembly of TMV on DNA templates also enables the production of new DNA-protein hybrid nanostructures, which are not attainable by using previous assembly methods.


Assuntos
DNA/química , Nanoestruturas/química , RNA Viral/química , Vírus do Mosaico do Tabaco/química , Proteínas Virais/química , DNA/genética , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA Viral/genética , Vírus do Mosaico do Tabaco/genética , Proteínas Virais/genética
16.
PLoS Pathog ; 14(1): e1006756, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293695

RESUMO

Plant genomes encode large numbers of nucleotide-binding (NB) leucine-rich repeat (LRR) immune receptors (NLR) that mediate effector triggered immunity (ETI) and play key roles in protecting crops from diseases caused by devastating pathogens. Fitness costs are associated with plant NLR genes and regulation of NLR genes by micro(mi)RNAs and phased small interfering RNAs (phasiRNA) is proposed as a mechanism for reducing these fitness costs. However, whether NLR expression and NLR-mediated immunity are regulated during plant growth is unclear. We conducted genome-wide transcriptome analysis and showed that NLR expression gradually increased while expression of their regulatory small RNAs (sRNA) gradually decreased as plants matured, indicating that sRNAs could play a role in regulating NLR expression during plant growth. We further tested the role of miRNA in the growth regulation of NLRs using the tobacco mosaic virus (TMV) resistance gene N, which was targeted by miR6019 and miR6020. We showed that N-mediated resistance to TMV effectively restricted this virus to the infected leaves of 6-week old plants, whereas TMV infection was lethal in 1- and 3-week old seedlings due to virus-induced systemic necrosis. We further found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination. Analyses of reporter genes in transgenic plants showed that growth regulation of N expression was post-transcriptionally mediated by MIR6019/6020 whereas MIR6019/6020 was regulated at the transcriptional level during plant growth. TMV infection of MIR6019/6020 transgenic plants indicated a key role for miR6019-triggered phasiRNA production for regulation of N-mediated immunity. Together our results demonstrate a mechanistic role for miRNAs in regulating innate immunity during plant growth.


Assuntos
Regulação da Expressão Gênica de Plantas , Imunidade Inata , Nicotiana/metabolismo , Imunidade Vegetal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Solanum lycopersicum/metabolismo , Resistência à Doença , Perfilação da Expressão Gênica , Genes Reporter , Genoma de Planta , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , RNA de Plantas , Plântula/crescimento & desenvolvimento , Plântula/imunologia , Plântula/metabolismo , Plântula/virologia , Especificidade da Espécie , Nicotiana/crescimento & desenvolvimento , Nicotiana/imunologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Vírus do Mosaico do Tabaco/fisiologia
17.
Bioconjug Chem ; 31(10): 2413-2420, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33001630

RESUMO

Multienzyme complexes, or metabolons, are natural assemblies or clusters of sequential enzymes in biosynthesis. Spatial proximity of the enzyme active sites results in a substrate channeling effect, streamlines the cascade reaction, and increases the overall efficiency of the metabolic pathway. Engineers have constructed synthetic multienzyme complexes to acquire better control of the metabolic flux and a higher titer of the target product. As most of these complexes are assembled through orthogonal interactions or bioconjugation reactions, the number of enzymes to be assembled is limited by the number of orthogonal interaction or reaction pairs. Here, we utilized the Tobacco mosaic virus (TMV) virus-like particle (VLP) as protein scaffold and orthogonal reactive protein pairs (SpyCatcher/SpyTag and SnoopCatcher/SnoopTag) as linker modules to assemble three terpene biosynthetic enzymes in Escherichia coli. The enzyme assembly switched on the production of amorpha-4,11-diene, whereas the product was undetectable in all the controls without assembly. This work demonstrates a facile strategy for constructing scaffolded catalytic nanomachineries to biosynthesize valuable metabolites in bacterial cells, and a unique assembly induced the switch-on mechanism in biosynthesis for the first time.


Assuntos
Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Terpenos/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Vírion/metabolismo , Biocatálise , Vias Biossintéticas , Escherichia coli/genética , Engenharia Genética , Complexos Multienzimáticos/genética , Vírus do Mosaico do Tabaco/genética , Vírion/genética
18.
Virol J ; 17(1): 43, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234060

RESUMO

BACKGROUND: Zika virus (ZIKV) is a major human pathogen and member of the Flavivirus genus. Previous studies have identified neutralizing antibodies from Zika patients that bind to quaternary epitopes across neighboring envelope (E) proteins, called E dimer epitopes (EDE). An asparagine-linked glycan on the "glycan loop" (GL) of the ZIKV envelope protein protects the functionally important "fusion loop" on the opposite E subunit in the dimer, and EDE antibodies have been shown to bind to both of these loops. Human EDE antibodies have been divided into two subclasses based on how they bind to the glycan loop region: EDE1 antibodies do not require glycosylation for binding, while EDE2 antibodies strongly rely on the glycan for binding. METHODS: ZIKV GL was expressed on tobacco mosaic virus nanoparticles. Mice were immunized with GL or full-length monomeric E and the immune response was analyzed by testing the ability of sera and monoclonal antibodies to bind to GL and to neutralize ZIKV in in vitro cellular assay. RESULTS: We report here the existence of ZIKV moderately neutralizing antibodies that bind to E monomers through epitopes that include the glycan loop. We show that sera from human Zika patients contain antibodies capable of binding to the unglycosylated glycan loop in the absence of the rest of the envelope protein. Furthermore, mice were inoculated with recombinant E monomers and produced neutralizing antibodies that either recognize unglycosylated glycan loop or require glycan for their binding to monomeric E. We demonstrate that both types of antibodies neutralize ZIKV to some extent in a cellular virus neutralization assay. CONCLUSIONS: Analogous to the existing EDE antibody nomenclature, we propose a new classification for antibodies that bind to E monomer epitopes (EME): EME1 and EME2 for those that do not require and those that do require glycan for binding to E, respectively.


Assuntos
Anticorpos Antivirais/imunologia , Polissacarídeos/imunologia , Proteínas do Envelope Viral/imunologia , Zika virus/química , Zika virus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos , Epitopos/imunologia , Feminino , Glicosilação , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Testes de Neutralização , Polissacarídeos/genética , Vírus do Mosaico do Tabaco/genética , Infecção por Zika virus/virologia
19.
Phytopathology ; 110(1): 194-205, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31502520

RESUMO

Tobacco mosaic virus (TMV) is an extensively studied RNA virus known to infect tobacco (Nicotiana tabacum) and other solanaceous crops. TMV has been classified as a seedborne virus in tobacco, with infection of developing seedlings thought to occur from contact with the TMV-infected seed coat. The mechanism of TMV transmission through seed was studied in seed of the K 326 cultivar of flue-cured tobacco. Cross pollinations were performed to determine the effect of parental tissue on TMV infection in seed. Dissection of individual tobacco seeds into seed coat, endosperm, and embryo was performed to determine TMV location within a seed, while germination tests and separation of the developing seedling into seed coat, roots, and cotyledons were conducted to estimate the percent transmission of TMV. A reverse-transcriptase quantitative PCR (RT-qPCR) assay was developed and used to determine TMV concentrations in individual seed harvested from pods that formed on plants from TMV-infected and noninfected crosses. The results showed maternal transmission of TMV to tobacco seed and seedlings that developed from infected seed, not paternal transmission. RT-qPCR and endpoint PCR assays were also conducted on the separated seed coat, endosperm, and embryo of individual seed and separated cotyledons, roots, and seed coats of individual seedlings that developed from infected tobacco seed to identify the location of the virus in the seed and the subsequent path the virus takes to infect the developing seedling. RT-qPCR and endpoint PCR assay results showed evidence of TMV infection in the endosperm and embryo, as well as in the developing seedling roots and cotyledons within 10 days of initiating seed germination. To our knowledge, this is the first report of TMV being detected in embryos of tobacco seed, demonstrating that TMV is seedborne and seed-transmitted in flue-cured tobacco.


Assuntos
Nicotiana , Reação em Cadeia da Polimerase em Tempo Real , Vírus do Mosaico do Tabaco , Doenças das Plantas/virologia , Plântula/virologia , Sementes/virologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/fisiologia
20.
Biochemistry (Mosc) ; 85(3): 310-317, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32564735

RESUMO

The structure of tobacco mosaic virus (TMV) virions and stacked disk aggregates of TMV coat protein (CP) in solution was analyzed by synchrotron-based small-angle X-ray scattering (SAXS) and negative contrast transmission electron microscopy (TEM). TMV CP aggregates had a unique stability but did not have helical symmetry. According to the TEM data, they were stacked disks associated into transversely striated rod-shaped structures 300 to 800 Å long. According to modeling based on the crystallographic model of the 4-layer TMV CP aggregate (PDB: 1EI7), the stacked disks represented hollow cylinders. The calculated SAXS pattern for the disks was compared to the experimental one over the entire measured range. The best correlation with the SAXS data was found for the model with the repeating central pair of discs; the SAXS curves for the stacked disks were virtually identical irrespectively of the protein isolation method. The positions of maxima on the scatter curves could be used as characteristic features of the studied samples; some of the peaks were assigned to the existing elements of the quaternary structure (periodicity of aggregate structure, virion helix pitch). Low-resolution structural data for the repolymerized TMV CP aggregates in solution under conditions similar to natural were produced for the first time. Analysis of such nano-size objects is essential for their application in biomedicine and biotechnology.


Assuntos
Proteínas do Capsídeo/química , Vírus do Mosaico do Tabaco/fisiologia , Biotecnologia , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Agregados Proteicos , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Síncrotrons , Vírus do Mosaico do Tabaco/genética , Vírion , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA