Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 98(4): e0160323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38526054

RESUMO

mRNA-1647 is an investigational mRNA-based vaccine against cytomegalovirus (CMV) that contains sequences encoding the CMV proteins glycoprotein B and pentamer. Humoral and cellular immune responses were evaluated in blood samples collected from healthy CMV-seropositive and CMV-seronegative adults who participated in a phase 1 trial of a three-dose series of mRNA-1647 (NCT03382405). Neutralizing antibody (nAb) titers against fibroblast and epithelial cell infection in sera from CMV-seronegative mRNA-1647 recipients were higher than those in sera from control CMV-seropositive samples and remained elevated up to 12 months after dose 3. nAb responses elicited by mRNA-1647 were comparable across 14 human CMV (HCMV) strains. Frequencies of antigen-specific memory B cells increased in CMV-seropositive and CMV-seronegative participants after each mRNA-1647 dose and remained elevated for up to 6 months after dose 3. mRNA-1647 elicited robust increases in frequencies and polyfunctionality of CD4+ T helper type 1 and effector CD8+ T cells in samples from CMV-seronegative and CMV-seropositive participants after stimulation with HCMV-specific peptides. The administration of three doses of mRNA-1647 to healthy adults elicited high nAb titers with wide-breadth, long-lasting memory B cells, and strong polyfunctional T-cell responses. These findings support further clinical development of the mRNA-1647 vaccine against CMV.IMPORTANCECytomegalovirus (CMV), a common virus that can infect people of all ages, may lead to serious health problems in unborn babies and those with a weakened immune system. Currently, there is no approved vaccine available to prevent CMV infection; however, the investigational messenger RNA (mRNA)-based CMV vaccine, mRNA-1647, is undergoing evaluation in clinical trials. The current analysis examined samples from a phase 1 trial of mRNA-1647 in healthy adults to better understand how the immune system reacts to vaccination. Three doses of mRNA-1647 produced a long-lasting immune response, thus supporting further investigation of the vaccine in the prevention of CMV infection.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT03382405).


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Adulto , Humanos , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , RNA Mensageiro/genética
2.
J Infect Dis ; 230(2): 455-466, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38324766

RESUMO

BACKGROUND: MF59-adjuvanted gB subunit (gB/MF59) vaccine demonstrated approximately 50% efficacy against human cytomegalovirus (HCMV) acquisition in multiple clinical trials, suggesting that efforts to improve this vaccine design might yield a vaccine suitable for licensure. METHODS: A messenger RNA (mRNA)-based vaccine candidate encoding HCMV gB and pentameric complex (PC), mRNA-1647, is currently in late-stage efficacy trials. However, its immunogenicity has not been compared to the partially effective gB/MF59 vaccine. We assessed neutralizing and Fc-mediated immunoglobulin G (IgG) effector antibody responses induced by mRNA-1647 in both HCMV-seropositive and -seronegative vaccinees from a first-in-human clinical trial through 1 year following third vaccination using a systems serology approach. Furthermore, we compared peak anti-gB antibody responses in seronegative mRNA-1647 vaccinees to that of seronegative gB/MF59 vaccine recipients. RESULTS: mRNA-1647 vaccination elicited and boosted HCMV-specific IgG responses in seronegative and seropositive vaccinees, respectively, including neutralizing and Fc-mediated effector antibody responses. gB-specific IgG responses were lower than PC-specific IgG responses. gB-specific IgG and antibody-dependent cellular phagocytosis responses were lower than those elicited by gB/MF59. However, mRNA-1647 elicited higher neutralization and antibody-dependent cellular cytotoxicity (ADCC) responses. CONCLUSIONS: Overall, mRNA-1647 vaccination induced polyfunctional and durable HCMV-specific antibody responses, with lower gB-specific IgG responses but higher neutralization and ADCC responses compared to the gB/MF59 vaccine. CLINICAL TRIALS REGISTRATION: NCT03382405 (mRNA-1647) and NCT00133497 (gB/MF59).


Assuntos
Adjuvantes Imunológicos , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Polissorbatos , Esqualeno , Vacinas de mRNA , Humanos , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Citomegalovirus/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , Polissorbatos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Esqualeno/administração & dosagem , Esqualeno/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética
3.
Cytokine ; 176: 156546, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359558

RESUMO

Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are essential. Though the exact roles of defense mechanisms are unidentified, virus-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. Identifying the CMV antigens that trigger these protective immune responses will help us choose the most suitable CMV-related proteins for future vaccines. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets for antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins for their ability to induce specific antibody responses and cytokine production in a mouse model. We observed a significant CMV-antigen-specific antibody response to UL80a/pp38 and UL83/pp65 (E/C>2.0). Mice immunized with UL80a/pp38 had significantly higher concentrations of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, and IL-17A (p<0.05). Mice immunized with UL83/pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Ratios of Th1 to Th2 cytokines revealed a Th1 cytokine bias in mice immunized with UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB. We suggest that stimulation with multiple CMV-related proteins, which include UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future novel vaccines and immune-based therapeutic design.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Humanos , Animais , Camundongos , Citomegalovirus , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-17 , Citocinas , Interleucina-2 , Interleucina-4 , Proteínas da Matriz Viral , Antígenos Virais , Anticorpos Antivirais , Fosfoproteínas
6.
Vaccine ; 42(3): 713-722, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38142214

RESUMO

INTRODUCTION: Cytomegalovirus (CMV) is the most common cause of congenital infection and affected children often have permanent neurodevelopmental sequelae, including hearing loss and intellectual disability. Vaccines to prevent transmission of CMV during pregnancy are a public health priority. This first-in-humans dose-ranging, randomized, placebo-controlled, observer-blinded study evaluated the safety and immunogenicity of an enveloped virus-like particle (eVLP) vaccine expressing a modified form of the CMV glycoprotein B (gB). METHODS: Healthy CMV-seronegative 18 to 40-year-olds at 3 Canadian study sites were randomized to one of 4 dose formulations (0.5 µg, 1 µg, or 2 µg gB content with alum) or 1 µg gB without alum, or placebo, given intramuscularly on days 0, 56 and 168. Outcome measures were solicited and unsolicited adverse events (AE), severe AE, gB and AD-2 epitope binding antibody titers and avidity, and neutralizing antibody (nAb) titers to CMV measured in fibroblast and epithelial cell infection assays. RESULTS: Among 125 participants, the most common solicited local and general AEs were pain and headache, respectively. A dose-dependent increase in gB binding, avidity and nAb titers was observed after doses 2 and 3, with the highest titers in the alum-adjuvanted 2.0 µg dose recipients after the third dose; in the latter 24 % had responses to the broadly neutralizing AD-2 epitope. Neutralizing activity to CMV infection of fibroblasts was seen in 100 % of 2.0 µg alum-adjuvanted dose recipients, and to epithelial cell infection in 31 %. Epithelial cell nAb titers were positively correlated with higher geometric mean CMV gB binding titers. CONCLUSIONS: An eVLP CMV vaccine was immunogenic in healthy CMV-seronegative adults and no safety signals were seen. Alum adjuvantation increased immunogenicity as did higher antigen content and a three dose schedule. This phase 1 trial supports further development of this eVLP CMV vaccine candidate.


Assuntos
Compostos de Alúmen , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Vacinas de Partículas Semelhantes a Vírus , Adulto , Criança , Gravidez , Feminino , Humanos , Citomegalovirus , Anticorpos Antivirais , Canadá , Infecções por Citomegalovirus/prevenção & controle , Vacinação , Hidróxido de Alumínio , Adjuvantes Imunológicos , Epitopos , Anticorpos Neutralizantes , Imunogenicidade da Vacina
7.
Antiviral Res ; 227: 105914, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759930

RESUMO

Due to the severity of CMV infection in immunocompromised individuals the development of a vaccine has been declared a priority. However, despite the efforts made there is no yet a vaccine available for clinical use. We designed an approach to identify new CMV antigens able to inducing a broad immune response that could be used in future vaccine formulations. We have used serum samples from 28 kidney transplant recipients, with a previously acquired CMV-specific immune response to identify viral proteins that were recognized by the antibodies present in the patient serum samples by Western blot. A band of approximately 45 kDa, identified as UL44, was detected by most serum samples. UL44 immunogenicity was tested in BALB/c mice that received three doses of the UL44-pcDNA DNA vaccine. UL44 elicited both, a strong antibody response and CMV-specific cellular response. Using bioinformatic analysis we demonstrated that UL44 is a highly conserved protein and contains epitopes that are able to activate CD8 lymphocytes of the most common HLA alleles in the world population. We constructed a UL44 ORF deletion mutant virus that produced no viral progeny, suggesting that UL44 is an essential viral protein. In addition, other authors have demonstrated that UL44 is one of the most abundant viral proteins after infection and have suggested an essential role of UL44 in viral replication. Altogether, our data suggests that UL44 is a potent antigen, and favored by its abundance, it may be a good candidate to include in a vaccine formulation.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Camundongos Endogâmicos BALB C , Proteínas Virais , Animais , Camundongos , Humanos , Citomegalovirus/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Proteínas Virais/imunologia , Proteínas Virais/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Feminino , Vacinas contra Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/administração & dosagem , Linfócitos T/imunologia , Antígenos Virais/imunologia , Transplante de Rim , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA