Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581910

RESUMO

Myzus persicae is an important pest that has developed resistance to nearly all currently used insecticidal products. The employment of insecticide synergists is one of the effective strategies that need to be developed for the management of this resistance. Our study showed that treatment with a combination of the antibiotic, rifampicin, with imidacloprid, cyantraniliprole, or clothianidin significantly increased their toxicities against M. persicae, by 2.72, 3.59, and 2.41 folds, respectively. Rifampicin treatment led to a noteworthy reduction in the activities of multifunctional oxidases (by 32.64%) and esterases (by 23.80%), along with a decrease in the expression of the CYP6CY3 gene (by 58.57%) in M. persicae. It also negatively impacted the fitness of the aphids, including weight, life span, number of offspring, and elongation of developmental duration. In addition, bioassays showed that the combination of rifampicin and a detoxification enzyme inhibitor, piperonyl butoxide, or dsRNA of CYP6CY3 further significantly improved the toxicity of imidacloprid against M. persicae, by 6.19- and 7.55-fold, respectively. The present study suggests that development of active ingredients such as rifampicin as candidate synergists, show promise to overcome metabolic resistance to insecticides in aphids.


Assuntos
Afídeos , Guanidinas , Inseticidas , Neonicotinoides , Nitrocompostos , Butóxido de Piperonila , Rifampina , Tiazóis , Animais , Rifampina/toxicidade , Rifampina/farmacologia , Afídeos/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Tiazóis/toxicidade , Guanidinas/toxicidade , Butóxido de Piperonila/toxicidade , Pirazóis/toxicidade , Sinergismo Farmacológico , Resistência a Inseticidas/genética , Sinergistas de Praguicidas/toxicidade , ortoaminobenzoatos/toxicidade , Esterases/metabolismo
2.
Ecotoxicol Environ Saf ; 279: 116491, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805832

RESUMO

Transplant treatment with chlorantraniliprole (CAP) is a proactive approach to protect transplanted plants from pests during early establishment and has been comprehensively applied in tobacco fields in Guangdong Province, China. However, it is not known whether the high dose of CAP in transplant treatments has lethal or sublethal effects on the generalist predator Rhynocoris fuscipes Fabricius (Hemiptera: Reduviidae). To address this concern, the mortalities of R. fuscipes were assessed when 2nd instar larvae of R. fuscipes were in direct contact with or consuming CAP and when their eggs were exposed to CAP. Furthermore, 2nd instar nymphs R. fuscipes were long-term exposed to CAP until they reached adulthood, and their life table parameters were determined. After exposure to CAP, the activity of detoxification enzymes (P450, CaeE and GST) and the functional respond of R. fuscipes to their preys Agrotis ipsilon larvae were determined. In this study, CAP at all concentrations did not significantly increase the mortality of 2nd instar of R. fuscipes nymphs in comparison with the control. The detoxification enzyme (P450, CarE and GST) activities and the number of A. ipsilon larvae consumed by R. fuscipes in the transplant treatment were not affected by CAP after 3-d or long-term exposure. These results indicated that CAP was harmless to R. fuscipes according to IOBC protocols. However, during the treatment of 2nd instar nymphs with a label rate of 15 g AI/ha and a 5× label rate of 75 g AI/ha, CAP significantly prolonged the pre-adult and pre-oviposition periods, and treated adults had lower oviposition. Attention should be given to the time interval between transplant treatment and the release of this biocontrol agent into the field to minimize the impact of CAP on the predator R. fuscipes.


Assuntos
Fertilidade , Inseticidas , Larva , Ninfa , Comportamento Predatório , ortoaminobenzoatos , Animais , ortoaminobenzoatos/toxicidade , Larva/efeitos dos fármacos , Inseticidas/toxicidade , Ninfa/efeitos dos fármacos , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Fertilidade/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Hemípteros/fisiologia , China , Feminino , Heterópteros/efeitos dos fármacos , Heterópteros/fisiologia , Cadeia Alimentar
3.
Pestic Biochem Physiol ; 202: 105920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879321

RESUMO

The queen is the sole reproductive individual and the maturing brood replenishes the shorter-lived worker bees. Production of many crops relies on both pesticides and bee pollination to improve crop quantity and quality. Despite the certain knowledge on chemical pesticides caused damage to worker bee physiology and behavior, our understanding of the relationship between honeybee queen development and chemical pesticides remains weak. Here, we comprehensive investigate the effects of the widely used insecticide chlorantraniliprole on the growth, hormone levels, and detoxifying enzyme activity of queen larvae. It has been determined that chlorantraniliprole present a chronic toxic effect on queen larvae and also reduced the fitness of queen, and that these effects are positively correlated with pesticide levels. It has been found that queen larvae began to show reduced capping and emergence rates when exposed to 2 ng/larva of chlorantraniliprole. At 20 ng/larva, queen capping and emergence rates were the lowest, and there were significant reductions in larval hormone level. Chlorantraniliprole have an effect on detoxification enzyme activity and hormone levels in queen larvae. In conclusion, chlorantraniliprole can adversely affect the growth and development of queen larvae. Our findings may guide the scientifically sound use of chemical pesticides to reduce potential risks to queen larvae.


Assuntos
Inseticidas , Larva , ortoaminobenzoatos , Animais , ortoaminobenzoatos/toxicidade , Larva/efeitos dos fármacos , Inseticidas/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Feminino
4.
Pestic Biochem Physiol ; 201: 105892, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685254

RESUMO

As an agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda, poses a severe threat to agriculture in China. Chlorantraniliprole has been widely used to control this pest. In our previous studies, we discovered that LD10, LD20, and LD30 chlorantraniliprole promoted encapsulation in the 4th instar larvae of the FAW, with LD30 chlorantraniliprole having the most significant effect. To further investigate the molecular mechanism underlying the sublethal effects of chlorantraniliprole on encapsulation in the FAW, this study conducted the effects of encapsulation in 4th instar larvae of the FAW exposed to LD30 chlorantraniliprole. Then, we analyzed the transcriptome of the FAW hemolymph treated with LD30 chlorantraniliprole and identified genes related to encapsulation using RNAi. Our results showed that the encapsulation in the FAW was enhanced at 6, 12, 18, 24, and 48 h after exposure to LD30 chlorantraniliprole. Additionally, LD30 chlorantraniliprole significantly affected the expression of certain immune-related genes, with the heat shock protein 70 family gene SfHSP68.1 showing the most significant upregulation. Subsequent interference with SfHSP68.1 resulted in a significant inhibition of encapsulation in FAW. These findings suggested that LD30 chlorantraniliprole can promote encapsulation in the FAW by upregulating SfHSP68.1 expression. This study provides valuable insights into the sublethal effects of chlorantraniliprole on encapsulation in the FAW and the interaction between encapsulation and heat shock proteins (HSPs).


Assuntos
Proteínas de Choque Térmico HSP70 , Proteínas de Insetos , Inseticidas , Larva , Spodoptera , ortoaminobenzoatos , Animais , ortoaminobenzoatos/toxicidade , ortoaminobenzoatos/farmacologia , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Larva/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
Ecotoxicol Environ Saf ; 253: 114658, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796207

RESUMO

Pesticide residues have serious environmental impacts on rice-based ecosystems. In rice fields, Chironomus kiiensis and Chironomus javanus provide alternative food sources to predatory natural enemies of rice insect pests, especially when pests are low. Chlorantraniliprole is a substitute for older classes of insecticides and has been used extensively to control rice pests. To determine the ecological risks of chlorantraniliprole in rice fields, we evaluated its toxic effects on certain growth, biochemical and molecular parameters in these two chironomids. The toxicity tests were performed by exposing third-instar larvae to a range of concentrations of chlorantraniliprole. LC50 values at 24 h, 48 h, and 10 days showed that chlorantraniliprole was more toxic to C. javanus than to C. kiiensis. Chlorantraniliprole significantly prolonged the larval growth duration, inhibited pupation and emergence, and decreased egg numbers of C. kiiensis and C. javanus at sublethal dosages (LC10 = 1.50 mg/L and LC25 = 3.00 mg/L for C. kiiensis; LC10 = 0.25 mg/L and LC25 = 0.50 mg/L for C. javanus). Sublethal exposure to chlorantraniliprole significantly decreased the activity of the detoxification enzymes carboxylesterase (CarE) and glutathione S-transferases (GSTs) in both C. kiiensis and C. javanus. Sublethal exposure to chlorantraniliprole also markedly inhibited the activity of the antioxidant enzyme peroxidase (POD) in C. kiiensis and POD and catalase (CAT) in C. javanus. Expression levels of 12 genes revealed that detoxification and antioxidant abilities were affected by sublethal exposures to chlorantraniliprole. There were significant changes in the expression levels of seven genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, and POD) in C. kiiensis and ten genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, GSTu1, GSTu2, CAT, and POD) in C. javanus. These results provide a comprehensive overview of the differences in chlorantraniliprole toxicity to chironomids, indicating that C. javanus is more susceptible and suitable as an indicator for ecological risk assessment in rice ecosystems.


Assuntos
Chironomidae , Inseticidas , Animais , Antioxidantes/farmacologia , Ecossistema , Larva , ortoaminobenzoatos/toxicidade , Inseticidas/toxicidade
6.
Ecotoxicol Environ Saf ; 263: 115292, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37494733

RESUMO

Chlorantraniliprole (CAP) is a presentative diamide pesticide utilized in agricultural area and as well as rice-fish co-culture system for pest control. However, the understanding of toxic effects of CAP on fish species is still incomplete. In the present study, we performed an integrated study of the acute toxicity and bioaccumulation of CAP on the crucian carp, Carassius carassius, a fish species widely distributed in freshwater area in China and commonly farmed in the rice-fish co-culture systems. Besides, biochemical changes, transcriptional responses and gut microbiota of fish were investigated upon sub-chronic CAP exposure. The results showed that CAP is low toxic to crucian carp with a 96 h LC50 of 74.824 mg/L, but has considerable accumulation in the fish muscles when exposed to 3 mg/L of CAP for 14 d and still detectable after 18 d recovery in fresh water. For sub-chronic test, fish were exposed to CAP at 0, 0.3, 3 and 30 mg/L respectively for 14 d. CAP induced oxidative stress and detoxification inhibition in the liver of fish by decreasing antioxidative and detoxicated enzymes activities and downregulating relevant genes expression. In addition, disrupted gut flora composition was found in all experimental groups by the 16 S rRNA sequencing data, indicating the gut microbiota dysbiosis in crucian carp and potential adverse host effect. All the results suggest that CAP at sublethal concentrations has prominent toxic effect on crucian carp and more attentions should be paid especially using directly in an integrated aquaculture system.


Assuntos
Carpas , Microbioma Gastrointestinal , Praguicidas , Animais , Praguicidas/toxicidade , ortoaminobenzoatos/toxicidade
7.
Ecotoxicol Environ Saf ; 268: 115682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979366

RESUMO

Bees, essential for pollination in agriculture and global economic growth. However, the great wax moth (Galleria mellonella, GWM), a Lepidopteran insect, poses a substantial threat to bee colonies, contributing to a global decline in bee populations. Chlorantraniliprole (CH) is one of the primary insecticide used to control GWM due to its efficacy and low toxicity to bees. To improve beekeeping safety and reduce the risk of GWM developing resistance to prolonged use of CH, we investigated the potential of combining methionine (MET) which has been found to have insecticidal activity against certain Lepidoptera pests, with chlorantraniliprole for use in the apiculture industry. This study assessed the combined effects of MET and CH on GWM and honeybees by employing the maximum concentration of MET (1 %, w/w), previously reported as safe for honeybees, and the practical concentration of CH (1 mg/kg) for GWM control. The results revealed limited acute lethal toxicity of MET to GWM and honeybees, whereas the combined chronic exposure of MET and CH (MIX) led to significant synergistic lethal effects on GWM mortality. Nevertheless, the protective effect of MET on honeybees exposed to CH was significant under chronic exposure. Potential mechanisms underlying the synergistic actions of MET and CH may stem from MET-induced protection of the "Cysteine and methionine" and the "Glycine, serine, and threonine" metabolism pathways. Furthermore, immune stress mitigation was also observed in honeybee immune-related gene transcripts treated by the combination of MET and CH under both acute and chronic exposure. The effects of MET on CH activity in GWM and honeybees are likely due to metabolic regulation. This study suggests the potential of developing MET as a promising biopesticide or protective agent in the future.


Assuntos
Inseticidas , Metionina , Abelhas , Animais , Metionina/farmacologia , Inseticidas/toxicidade , ortoaminobenzoatos/toxicidade , Racemetionina
8.
Pestic Biochem Physiol ; 185: 105150, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35772843

RESUMO

Chilo suppressalis Walker (Lepidoptera: Crambidae) is one of the most destructive pests occurring in the rice-growing regions of Asia. Parasitoids, mainly egg parasitoids, have been of interest for several years even with practical used cases. Therefore, the potential impact of insecticides on natural enemies needs great attention. In this study, chlorantraniliprole was evaluated for its impact on C. suppressalis and two dominant parasitic wasps. Bioassays showed that chlorantraniliprole had negligible toxicity to Eriborus terebrans but was significantly toxic to Chelonus munakatae; the mortality exceeded 50% when the concentration reached 46.83 ng/cm2. Enzyme assays suggested that the significantly different carboxylesterase activity may be involved in the high-level detoxification metabolism of E. terebrans. According to the results of enzyme gene correlation analysis, P450s may be the dominant factor in the detoxification metabolism of C. munakatae. In addition, the ryanodine receptor C-terminus of C. suppressalis (CsRyR), C. munakatae (CmRyR) and E. terebrans (EtRyR) were successfully cloned. Different amino acids at resistance mutation I4758 M between susceptible C. suppressalis (I) and parasitic wasps (M) may be related to susceptibility differences. Simulated docking showed that CsRyR and CmRyR can interact with chlorantraniliprole but not EtRyR. More interaction forces were formed between CsRyR and chlorantraniliprole than CmRyR. Furthermore, a Pi-Pi T-shape formed between 73PHE in CsRyR and the benzene ring in chlorantraniliprole. These results indicated that both detoxification metabolism and the target site could mediate the susceptibility difference between C. suppressalis and its parasitic wasps.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Vespas , Animais , China , Resistência a Inseticidas/genética , Inseticidas/toxicidade , ortoaminobenzoatos/toxicidade
9.
Bull Environ Contam Toxicol ; 109(6): 996-1000, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36074128

RESUMO

The toxicity of the insecticide chlorantraniliprole and its formulated product Altacor® was determined for the Cladoceran, Ceriodaphnia dubia Richard. Acute toxicity (48 h) and 21 d population studies were conducted. The hypothesis of this study was that these two compounds would have different toxicities. We conducted acute and chronic toxicity studies for each compound and compared the results to test this hypothesis. 48 h LC50s (95% CL) for chlorantraniliprole and Altacor® were 8.5 (6.6-11.5) and 6.0 (3.7-9.0) µg chlorantraniliprole/L water, respectively. Therefore, chlorantraniliprole and Altacor® were equitoxic to C. dubia at LC50 based on overlap of the 95% CL. In the population study, chlorantraniliprole and Altacor® concentrations equivalent to the acute LC5, 10, 25, and 50 for each product were evaluated on populations of C. dubia. Number of individuals after 21 d was the endpoint evaluated. T-tests conducted at each LC value indicated that there was no significant difference in population size between these two products at each LC value evaluated. Previous studies show that toxicity can vary greatly between formulated and technical grade pesticides. However, our results show that chlorantraniliprole and its formulated product, Altacor® were equally toxic to C. dubia. Therefore, making assumptions about the toxicity of formulated and unformulated products is ill advised.


Assuntos
Cladocera , Inseticidas , Poluentes Químicos da Água , Humanos , Animais , ortoaminobenzoatos/toxicidade , Inseticidas/toxicidade , Dose Letal Mediana , Poluentes Químicos da Água/toxicidade
10.
Biomed Chromatogr ; 35(12): e5213, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34227143

RESUMO

Cyantraniliprole is an anthranilic diamide insecticide used for the effective management of diamondback moth in cabbage. Dietary risk assessment of pesticides in food is a major concern now. This study developed a QuEChERS/HPLC-PDA-based highly efficient and reliable method, registering 89.80-100.11% recoveries of cyantraniliprole and its metabolite IN-J9Z38 from cabbage and soil with a relative standard deviation of 0.43-5.77%. Field experiment was conducted to study the residue dissipation of cyantraniliprole in cabbage and soil. Two foliar treatments of 10.26% formulation (Benevia) at 60 (T1 ) and 120 (T2 ) gram active ingredient/hectare were applied. The dissipation half-lives of cyantraniliprole in cabbage and soil were determined to be 3.5-4.2 and 3.8-5.3 days at T1 and 3.9-4.8 and 4.1-4.7 days at T2 , respectively. The maximum concentrations of IN-J9Z38 at T1 and T2 were 0.819 and 1.061 mg/kg, respectively, on the fifth day. A risk quotient value of <1 indicates no dietary risk to the consumers. The residues in the harvested cabbage were below the tolerance level of 2.0 mg/kg established by the regulatory body in India.


Assuntos
Brassica/química , Inseticidas , Resíduos de Praguicidas , Pirazóis , Poluentes do Solo , ortoaminobenzoatos , Brassica/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Dieta , Humanos , Inseticidas/análise , Inseticidas/farmacocinética , Inseticidas/toxicidade , Modelos Biológicos , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/farmacocinética , Resíduos de Praguicidas/toxicidade , Pirazóis/análise , Pirazóis/farmacocinética , Pirazóis/toxicidade , Medição de Risco , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , ortoaminobenzoatos/análise , ortoaminobenzoatos/farmacocinética , ortoaminobenzoatos/toxicidade
11.
Ecotoxicol Environ Saf ; 209: 111824, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360783

RESUMO

Cyantraniliprole is a novel diamide insecticide that acts upon the ryanodine receptor (RyR) and has broad application prospects. Accordingly, it is very important to evaluate the toxicity of cyantraniliprole to earthworms (Eisenia fetida) because of their vital role in maintaining a healthy soil ecosystem. In this study, an experiment was set up, using four concentrations (0.1, 1, 5, and 10 mg/kg) and solvent control group (0 mg/kg), to investigate the ecotoxicity of cyantraniliprole to earthworms. Our results showed that, after 28 days of exposure to cyantraniliprole, both cocoon production and the number of juvenile earthworms had decreased significantly at concentrations of either 5 or 10 mg/kg. On day 14, we measured the activities of digestive enzymes and ion pumps in the intestinal tissues of earthworms. These results revealed that cyantraniliprole exposure caused intestinal damage in earthworm, specifically changes to its intestinal enzyme activity and calcium ion content. Cyantraniliprole could lead to proteins' carbonylation under the high-dose treatments (i.e., 5 mg/kg, 10 mg/kg). At the same time, we also found that cyantraniliprole can cause the abnormal expression of key functional genes (including HSP70, CAT, RYR, ANN, and CAM genes). Moreover, the transcriptomics data showed that exposure to cyantraniliprole would affect the synthesis of carbohydrates, proteins and lipids, as well as their absorption and transformation, while cyantraniliprole would also affect signal transduction. In general, high-dose exposure to cyantraniliprole causes reproductive toxicity, genotoxicity, and intestinal damage to earthworms.


Assuntos
Inseticidas/toxicidade , Oligoquetos/fisiologia , Pirazóis/toxicidade , Poluentes do Solo/toxicidade , ortoaminobenzoatos/toxicidade , Animais , Dano ao DNA , Ecossistema , Solo , Poluentes do Solo/análise , Transcriptoma
12.
Ecotoxicology ; 30(6): 1007-1016, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34110545

RESUMO

The diamondback moth (Plutella xylostella L.), is an economic pest of cruciferous plants worldwide, which causes great economic loss to cruciferous plants production. However, the pest has developed resistance to insecticides. One of such insecticides is chlorantraniliprole. The study of the mechanisms underlying resistance is key for the effective management of resistance. In this study, a comparative proteomics approach was used to isolate and identify various proteins that differed between chlorantraniliprole-susceptible and -resistant strains of P. xylostella. Eleven proteins were significantly different and were successfully identified by MALDI-TOF-MS. Metabolism-related proteins accounted for the highest proportion among the eleven different proteins. The function of the PxGST2L protein was validated by RNAi. Knockdown of PxGST2L reduced the GST activity and increased the toxicity of chlorantraniliprole to the diamondback moth. The resistance ratio of diamondback moth to chlorantraniliprole was reduced from 1029 to 505. The results indicated that PxGST2L is partly responsible for chlorantraniliprole insecticide resistance in DBM. Our finding contributes to the understanding of the mechanism underlying resistance to chlorantraniliprole in the DBM, to develop effective resistance management tactics.


Assuntos
Inseticidas , Mariposas , Animais , Glutationa Transferase/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Larva , Mariposas/genética , ortoaminobenzoatos/toxicidade
13.
Pestic Biochem Physiol ; 174: 104798, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838722

RESUMO

The ryanodine receptor (RyR) is an intracellular calcium channel critical to the regulation of insect muscle contraction and the target site of diamide insecticides such as chlorantraniliprole, cyantraniliprole and flubendiamide. To-date, diamides are the only known class of synthetic molecules with high potency against insect RyRs. Target-based screening of an informer library led to discovery of a novel class of RyR activators, pyrrole-2-carboxamides. Efforts to optimize receptor activity resulted in analogs with potency comparable to that of commercial diamides when tested against RyR of the fruit fly, Drosophila melanogaster. Surprisingly, testing of pyrrole-2-carboxamides in whole-insect screens showed poor insecticidal activity, which is partially attributed to differential selectivity among insect receptors and rapid detoxification. Among various lepidopteran species field resistance to diamide insecticides has been well documented and in many cases has been attributed to a single point mutation, G4946E, of the RyR gene. As with diamide insecticides, the G4946E mutation confers greatly reduced sensitivity to pyrrole-2-carboxamides. This, coupled with findings from radioligand binding studies, indicates a shared binding domain between anthranilic diamides and pyrrole-2-carboxamides.


Assuntos
Inseticidas , Mariposas , Animais , Drosophila melanogaster/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/toxicidade , Mariposas/metabolismo , Pirróis/toxicidade , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ortoaminobenzoatos/toxicidade
14.
Bull Environ Contam Toxicol ; 107(5): 883-888, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34223932

RESUMO

The aim of the current study is to investigate whether silver catfish (Rhamdia quelen) individuals exposed to commercial formulation of the chlorantraniliprole insecticide used in rice crops present changes in biochemical parameters. Fifty-four (54) silver catfish individuals were distributed in six units per tank (n = 6/repetition; triplicate/treatment) and subjected to the following treatments: T1-control, without insecticide; T2 (0.02 µg/L of insecticide) and T3 (0.20 µg/L of insecticide). Exposure time lasted 24 or 96 h, and it was followed by 96 h recovery in pesticide-free water. Results have indicated biochemical changes in cortisol, glucose, lactate and plasma protein levels, as well as few ionic changes in animals' gills during the exposure and recovery periods. Chlorantraniliprole incidence in water resulted in some biochemical changes in silver catfish specimens' plasma and gills throughout the acute exposure protocol (sub-lethal dose). Thus, chlorantraniliprole insecticide has caused osmoregulatory and/or biochemical imbalance in the investigated species under the herein adopted laboratory conditions; these changes did not get back to normal levels even after specimens were left to recover for 96 h in clean water.


Assuntos
Peixes-Gato , Inseticidas , Animais , Brânquias , Humanos , Inseticidas/toxicidade , ortoaminobenzoatos/toxicidade
15.
Regul Toxicol Pharmacol ; 113: 104619, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088184

RESUMO

Combined use of photochemical and pharmacokinetic (PK) data for phototoxic risk assessment was previously proposed, and the system provided reliable phototoxic risk predictions of chemicals in same chemical series. This study aimed to verify the feasibility of the screening system for phototoxic risk assessment on dermally-applied chemicals with wide structural diversity, as a first attempt. Photochemical properties of test chemicals, 2-acetonaphthalene, 4'-methylbenzylidene camphor, 6-methylcoumarin, methyl N-methylanthranilate, and sulisobenzone, were evaluated in terms of UV absorption and reactive oxygen species (ROS) generation, and PK profiles of the test chemicals in rat skin were characterized after dermal co-application. All test chemicals showed strong UVA/B absorption with molar extinction coefficients of over 3000 M-1⋅cm-1, and irradiated 2-acetonaphthalene, 6-methylcoumarin, and methyl N-methylanthranilate exhibited significant ROS generation. Dermally-applied 2-acetonaphthalene and 4'-methylbenzylidene camphor indicated high and long-lasting skin deposition compared with the other test chemicals. Based on the photochemical and PK data, 2-acetonaphthalene was predicted to have potent phototoxic risk. The predicted phototoxic risk of the test chemicals by integration of obtained data was mostly consistent with their in vivo phototoxicity observed in rat skin. The screening strategy employing photochemical and PK data would have high prediction capacity and wide applicability for photosafety evaluation of chemicals.


Assuntos
Benzofenonas/toxicidade , Cânfora/análogos & derivados , Cumarínicos/toxicidade , Dermatite Fototóxica/metabolismo , Naftalenos/toxicidade , Pele/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Administração Cutânea , Animais , Benzofenonas/administração & dosagem , Benzofenonas/farmacocinética , Cânfora/administração & dosagem , Cânfora/farmacocinética , Cânfora/toxicidade , Cumarínicos/administração & dosagem , Cumarínicos/farmacocinética , Masculino , Estrutura Molecular , Naftalenos/administração & dosagem , Naftalenos/farmacocinética , Processos Fotoquímicos , Ratos , Ratos Sprague-Dawley , Medição de Risco , Raios Ultravioleta , ortoaminobenzoatos/administração & dosagem , ortoaminobenzoatos/farmacocinética
16.
Ecotoxicology ; 29(7): 1052-1061, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32448953

RESUMO

The combined use of chemicals and biological control is not always a successful strategy owing to the potential side effects on biocontrol agents. Lethal and sublethal effects of three commonly used insecticides were assessed on adult and immature stages of the egg parasitoid Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae). Recommended field concentrations of chlorantraniliprole, phosalone and spinosad caused mortality on preimaginal stages by 24, 87, and 98%, respectively. Lethal effects on parasitoid adults exposed to the insecticide dry residues were estimated as median lethal concentrations (LC50) that were 13.28, 0.25, and 0.03 µg a.i. ml-1 for chlorantraniliprole, phosalone, and spinosad, respectively. The effect of a low lethal concentration (LC30) of the compounds was evaluated on various adult biological traits, such as longevity, fecundity, emergence rate and other life table parameters. All compounds caused detrimental effects on all the estimated demographical indexes. Chlorantraniliprole affected the net reproductive rate, mean generation time and doubling time in comparison to the control; while, phosalone and spinosad adversely affected all assessed parameters. Phosalone and spinosad significantly reduced gross reproductive rate, net reproductive rate, intrinsic rate of increase, finite rate of increase, mean generation time and doubling time and reduced longevity, fecundity, emergence rate related to other biological parameters in comparison with control. The results suggest that all compounds are not fully compatible with the activity of T. brassicae, and that the inclusion of chlorantraniprole, spinosad and phosalone into Integrated Pest Management (IPM) involving this parasitoid has to be avoided. Nevertheless, further studies in open field conditions and on a multiple generation scale are necessary for providing a more definitive conclusion on the IPM suitability of the three tested insectcides.


Assuntos
Inseticidas/toxicidade , Macrolídeos/toxicidade , Compostos Organotiofosforados/toxicidade , Resíduos de Praguicidas/toxicidade , Vespas/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Animais , Combinação de Medicamentos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/parasitologia , Mariposas/crescimento & desenvolvimento , Mariposas/parasitologia , Óvulo/efeitos dos fármacos , Óvulo/crescimento & desenvolvimento , Óvulo/parasitologia , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Pupa/parasitologia
17.
Pestic Biochem Physiol ; 170: 104685, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980060

RESUMO

Sublethal doses of chlorantraniliprole (CAP) disrupt spinning disorder in the silkworm Bombyx mori (B. mori) and cause reduced cocoon production. In the present study, we investigated the effects of trace amounts of CAP on morphology and gene expression of the B. mori silk gland, found the posterior silk gland cells were possessed of disintegrated Endoplasmic reticulum (ER), unevenly distributed chromatin after exposure to CAP (0.01 mg/L). Gene expression analysis revealed that IRE1 and ATF6 ER stress-signaling pathways were inhibited, the PERK/CncC pathway was activated. Digital gene expression (DGE) analysis showed that detoxification-related genes, antioxidant genes and genes involved in ER protein processing pathway were expressed differentially in CAP-treated silkworm larvae. Notably, the transcript levels of the detoxification-related genes (CYP4M5, CYP6AB4, GSTD3 and GSTS1) and the antioxidant genes (CAT, TPX and SOD) were significantly increased, and the expression of ER protein processing-related genes (Sec61ß, Sec61γ, Sec23α and ERGIC-53) was significantly decreased after CAP exposure. The results showed that sublethal doses of CAP exposure caused ER stress, oxidative damage to the silk gland and the perturbation of protein processing in ER, thereby probably leading to abnormal growth of the silk gland and triggering the spinning failure in silkworm.


Assuntos
Bombyx/genética , Animais , Antioxidantes , Proteínas de Insetos/genética , Larva/genética , Seda , ortoaminobenzoatos/toxicidade
18.
Ecotoxicol Environ Saf ; 180: 288-294, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31100593

RESUMO

An experiment was set up to determine the rate of dissipation of chlorantraniliprole (CTP) from two soils with contrasting properties. The other objective of the study was to find out the effect of CTP on soil microorganisms (population, microbial biomass carbon and soil enzymes) under controlled environment. CTP residues when applied at recommended dose ((RD) (at 40 g a.i./ha)) could not be recovered either from alluvial soil or red soil at 60 days post application of CTP in a microcosm study. Higher clay content led to higher half-life in alluvial soil compared to red soil. CTP could not be recovered from RD treatment at 30 days after pesticide application under controlled environment. Faster dissipation of CTP was observed in rice rhizosphere soil with 23.89 and 34.65 days dissipation half-lives for RD and double the recommended dose (DRD) treatments, respectively. Different doses of chlorantraniliprole did not have considerable negative effect on actinomycetes, fungi, biological nitrogen fixers and phospahte solubilising bacteria except the bacteria population. Among the treatments, DRD recorded the lowest activity of dehyrodeganse, fluoresein diacetate hydrolase, acid and alkaline phosphatases followed by RD treatment. Microbial biomass carbon, ß -glycosidase and urease did not vary significantly among the different doses of CTP. In general, RD did not have negative effcts on soil microbes. Hence, CTP can be recommeded in rice pest managment maintaining existing soil microbes and soil enzymes activity.


Assuntos
Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , ortoaminobenzoatos/análise , Biomassa , Glicosídeo Hidrolases/análise , Oryza/crescimento & desenvolvimento , Rizosfera , Poluentes do Solo/toxicidade , Urease/análise , ortoaminobenzoatos/toxicidade
19.
Ecotoxicol Environ Saf ; 176: 58-63, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30921697

RESUMO

Chlorantraniliprole (CAP) can induce excessive calcium release from muscle of insects, causing muscle paralysis until death, and its residues in farmland can cause poisoning in Bombyx mori (B. mori), resulting in the failure of cocooning. No reports have investigated the effects of CAP exposure on detoxification enzyme activities and detoxification-related gene expression in B. mori. In the present study, we treated mulberry leaves with CAP by the leaf-dipping method, and then B. mori larvae were continuously fed with the polluted mulberry leaves. Moreover, the detoxification enzyme activities and the expressions of detoxification-related genes in the fat body of B. mori were examined. The results showed that at 24 h after CAP exposure, the activities of P450 and GST enzymes were all significantly increased, with P450 enzymes responding fastest. CarE enzyme activity was up-regulated in 24 h, and then it was decreased compared with the control group. Furthermore, the expressions of the key genes in the PI3K/Akt/CncC signaling pathway (PI3K, PDK, Akt, CncC and Keap1) at the mRNA were significantly increased. Western blotting analysis revealed that Akt was inhibited at the protein level, resulting in decreased expression of Keap1 and increased expression of CncC. These results indicated that the PI3K/Akt/CncC signaling pathway in the fat body of B. mori responded to CAP exposure and regulated the expressions of downstream detoxification enzymes, thus enhancing the detoxifying capability of B. mori.


Assuntos
Bombyx/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Animais , Bombyx/genética , Bombyx/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/metabolismo , Expressão Gênica/efeitos dos fármacos , Inativação Metabólica/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Ecotoxicology ; 28(8): 903-912, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392633

RESUMO

Silkworm (Bombyx mori) is an economic insect of the Lepidoptera. Chlorantraniliprole (CAP) exposure results in reduced growth and development of B. mori and failure in cocooning, seriously affecting the development of sericulture. To study the mechanisms underlying the damage to silkworm caused by sublethal doses of CAP, we examined the oxidative damage, the activities of digestive enzymes in midgut, and the expressions of midgut-related genes at the mRNA level. We found that CAP exposure inhibited the growth of silkworm, decreased the body mass and caused the accumulation of reactive oxygen species (ROS) [the levels of O2-, H2O2 and lipid peroxidation (MDA) were increased by 1.62-, 1.87- and 1.46-fold, respectively]. Moreover, we also found that the midgut cells were disintegrated, microvilli disappeared, the stroma became thinner, and the chromatin of nucleus became aggregated after CAP exposure by the analysis of transmission electron microscopy (TEM). In addition, the activities of digestive enzymes were dysregulated in midgut (the activities of α-amylase and trypsin were decreased 0.69- and 0.20-fold, respectively). Furthermore, digital gene expression (DGE) profiling analysis revealed that the expressions of oxidative phosphorylation pathway and antioxidant defense system related genes in midgut were decreased, indicating that it was the oxidative damage in midgut caused by CAP that mainly affected the growth of silkworm, rather than the toxicological effects of CAP. Collectively, this study provided valuable insights into the toxic effects of CAP on insects.


Assuntos
Bombyx/efeitos dos fármacos , Inseticidas/toxicidade , ortoaminobenzoatos/toxicidade , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Bombyx/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA