Your browser doesn't support javascript.
loading
Augmented phosphorylation of cardiac troponin I in hypertensive heart failure.
Dong, Xintong; Sumandea, C Amelia; Chen, Yi-Chen; Garcia-Cazarin, Mary L; Zhang, Jiang; Balke, C William; Sumandea, Marius P; Ge, Ying.
Affiliation
  • Dong X; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
J Biol Chem ; 287(2): 848-57, 2012 Jan 06.
Article in En | MEDLINE | ID: mdl-22052912
ABSTRACT
An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance of Ser(22/23) phosphorylation is well understood, the role of other cTnI phosphorylation sites in the regulation of cardiac contractility remains a topic of intense debate, in part, due to the lack of evidence of in vivo phosphorylation. In this study, we utilized top-down high resolution mass spectrometry (MS) combined with immunoaffinity chromatography to determine quantitatively the cTnI phosphorylation changes in spontaneously hypertensive rat (SHR) model of hypertensive heart disease and failure. Our data indicate that cTnI is hyperphosphorylated in the failing SHR myocardium compared with age-matched normotensive Wistar-Kyoto rats. The top-down electron capture dissociation MS unambiguously localized augmented phosphorylation sites to Ser(22/23) and Ser(42/44) in SHR. Enhanced Ser(22/23) phosphorylation was verified by immunoblotting with phospho-specific antibodies. Immunoblot analysis also revealed up-regulation of PKC-α and -δ, decreased PKCε, but no changes in PKA or PKC-ß levels in the SHR myocardium. This provides direct evidence of in vivo phosphorylation of cTnI-Ser(42/44) (PKC-specific) sites in an animal model of hypertensive heart failure, supporting the hypothesis that PKC phosphorylation of cTnI may be maladaptive and potentially associated with cardiac dysfunction.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Protein Kinase C / Troponin I / Heart Failure / Hypertension / Myocardium Limits: Animals / Humans / Male Language: En Journal: J Biol Chem Year: 2012 Type: Article Affiliation country: United States

Full text: 1 Database: MEDLINE Main subject: Protein Kinase C / Troponin I / Heart Failure / Hypertension / Myocardium Limits: Animals / Humans / Male Language: En Journal: J Biol Chem Year: 2012 Type: Article Affiliation country: United States