Your browser doesn't support javascript.
loading
Rotamer decomposition and protein dynamics: efficiently analyzing dihedral populations from molecular dynamics.
Watanabe, Hiroshi; Elstner, Marcus; Steinbrecher, Thomas.
Affiliation
  • Watanabe H; Inst. f. Phys. Chem., KIT, Kaiserstr. 12, 76131 Karlsruhe, Germany.
J Comput Chem ; 34(3): 198-205, 2013 Jan 30.
Article in En | MEDLINE | ID: mdl-23007849
ABSTRACT
Molecular mechanics methods have matured into powerful methods to understand the dynamics and flexibility of macromolecules and especially proteins. As multinanosecond to microsecond length molecular dynamics (MD) simulations become commonplace, advanced analysis tools are required to generate scientifically useful information from large amounts of data. Some of the key degrees of freedom to understand protein flexibility and dynamics are the amino acid residue side chain dihedral angles. In this work, we present an easily automated way to summarize and understand the relevant dihedral populations. A tremendous reduction in complexity is achieved by describing dihedral timeseries in terms of histograms decomposed into Gaussians. Using the familiar and widely studied protein lysozyme, it is demonstrated that our approach captures essential properties of protein structure and dynamics. A simple classification scheme is proposed that indicates the rotational state population for each dihedral angle of interest and allows a decision if a given side chain or peptide backbone fragment remains rigid during the course of an MD simulation, adopts a converged distribution between conformational substates or has not reached convergence yet.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Muramidase / Bacteriophage T4 / Molecular Dynamics Simulation Language: En Journal: J Comput Chem Journal subject: QUIMICA Year: 2013 Type: Article Affiliation country: Germany

Full text: 1 Database: MEDLINE Main subject: Muramidase / Bacteriophage T4 / Molecular Dynamics Simulation Language: En Journal: J Comput Chem Journal subject: QUIMICA Year: 2013 Type: Article Affiliation country: Germany