Your browser doesn't support javascript.
loading
Loss of HIF-1α impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells.
Sakagami, Hidemitsu; Makino, Yuichi; Mizumoto, Katsutoshi; Isoe, Tsubasa; Takeda, Yasutaka; Watanabe, Jun; Fujita, Yukihiro; Takiyama, Yumi; Abiko, Atsuko; Haneda, Masakazu.
Affiliation
  • Sakagami H; Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
Am J Physiol Endocrinol Metab ; 306(9): E1065-76, 2014 May 01.
Article in En | MEDLINE | ID: mdl-24619881
Defects in glucose uptake by the skeletal muscle cause diseases linked to metabolic disturbance such as type 2 diabetes. The molecular mechanism determining glucose disposal in the skeletal muscle in response to cellular stimuli including insulin, however, remains largely unknown. The hypoxia-inducible factor-1α (HIF-1α) is a transcription factor operating in the cellular adaptive response to hypoxic conditions. Recent studies have uncovered pleiotropic actions of HIF-1α in the homeostatic response to various cellular stimuli, including insulin under normoxic conditions. Thus we hypothesized HIF-1α is involved in the regulation of glucose metabolism stimulated by insulin in the skeletal muscle. To this end, we generated C2C12 myocytes in which HIF-1α is knocked down by short-hairpin RNA and examined the intracellular signaling cascade and glucose uptake subsequent to insulin stimulation. Knockdown of HIF-1α expression in the skeletal muscle cells resulted in abrogation of insulin-stimulated glucose uptake associated with impaired mobilization of glucose transporter 4 (GLUT4) to the plasma membrane. Such defect seemed to be caused by reduced phosphorylation of the protein kinase B substrate of 160 kDa (AS160). AS160 phosphorylation and GLUT4 translocation by AMP-activated protein kinase activation were abrogated as well. In addition, expression of the constitutively active mutant of HIF-1α (CA-HIF-1α) or upregulation of endogenous HIF-1α in C2C12 cells shows AS160 phosphorylation comparable to the insulin-stimulated level even in the absence of insulin. Accordingly GLUT4 translocation was increased in the cells expressing CA-HIF1α. Taken together, HIF-1α is a determinant for GLUT4-mediated glucose uptake in the skeletal muscle cells thus as a possible target to alleviate impaired glucose metabolism in, e.g., type 2 diabetes.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Muscle, Skeletal / Glucose Transporter Type 4 / Hypoxia-Inducible Factor 1, alpha Subunit / Glucose Limits: Animals Language: En Journal: Am J Physiol Endocrinol Metab Journal subject: ENDOCRINOLOGIA / FISIOLOGIA / METABOLISMO Year: 2014 Type: Article Affiliation country: Japan

Full text: 1 Database: MEDLINE Main subject: Muscle, Skeletal / Glucose Transporter Type 4 / Hypoxia-Inducible Factor 1, alpha Subunit / Glucose Limits: Animals Language: En Journal: Am J Physiol Endocrinol Metab Journal subject: ENDOCRINOLOGIA / FISIOLOGIA / METABOLISMO Year: 2014 Type: Article Affiliation country: Japan