Your browser doesn't support javascript.
loading
Crizotinib reduces the rate of dark adaptation in the rat retina independent of ALK inhibition.
Liu, Chang-Ning; Mathialagan, Nagappan; Lappin, Patrick; Fortner, Jay; Somps, Chris; Seitis, Gary; Johnson, Theodore R; Hu, Wenyue; Matsumoto, Diane.
Affiliation
  • Liu CN; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121 chang-ning.liu
  • Mathialagan N; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
  • Lappin P; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
  • Fortner J; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
  • Somps C; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
  • Seitis G; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
  • Johnson TR; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
  • Hu W; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
  • Matsumoto D; *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121.
Toxicol Sci ; 143(1): 116-25, 2015 Jan.
Article in En | MEDLINE | ID: mdl-25326243
Crizotinib (Xalkori) is a tyrosine kinase inhibitor of both anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition factor (c-Met). Though not predicted from standard nonclinical toxicological evaluation, visual disturbance became a frequently observed adverse event in humans. To understand the possible mechanism of this vision effect, an in vivo electroretinogram (ERG) study was conducted to assess retinal functional changes following oral administration of crizotinib. Immunohistochemical (IHC) staining of ALK and c-Met in the neural retinas of human, non-human primate, dog, rat, and mouse was used to aid in the animal model selection. ALK IHC staining was identified predominantly in the ganglion cell and inner nuclear layers of most species evaluated, in the inner plexiform layer in human and rodent, and in the nerve fiber layer in human and rat only. There was no apparent staining of any layer of the neural retina for c-Met in any of the species evaluated. ERG measurements identified a significant reduction in b-wave amplitude during the initial phase of dark adaptation in the crizotinib-treated rats. ERGs were also taken following oral administration of PF-06463922 (an ALK-selective inhibitor), for an understanding of potential kinase involvement. ERG effects were not observed in PF-06463922-treated animals when comparable exposures in the vitreous humor were achieved. Collectively, our results suggest that the ERG b-wave amplitude decreases during dark adaption following crizotinib administration may be related to signaling changes within the retina in rats, likely independent of ALK inhibition.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Pyrazoles / Pyridines / Retina / Receptor Protein-Tyrosine Kinases / Dark Adaptation / Protein Kinase Inhibitors Type of study: Prognostic_studies Limits: Animals / Humans / Male Language: En Journal: Toxicol Sci Journal subject: TOXICOLOGIA Year: 2015 Type: Article

Full text: 1 Database: MEDLINE Main subject: Pyrazoles / Pyridines / Retina / Receptor Protein-Tyrosine Kinases / Dark Adaptation / Protein Kinase Inhibitors Type of study: Prognostic_studies Limits: Animals / Humans / Male Language: En Journal: Toxicol Sci Journal subject: TOXICOLOGIA Year: 2015 Type: Article