Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching.
Nature
; 525(7567): 134-139, 2015 Sep 03.
Article
in En
| MEDLINE
| ID: mdl-26308889
During B-cell development, RAG endonuclease cleaves immunoglobulin heavy chain (IgH) V, D, and J gene segments and orchestrates their fusion as deletional events that assemble a V(D)J exon in the same transcriptional orientation as adjacent Cµ constant region exons. In mice, six additional sets of constant region exons (CHs) lie 100-200 kilobases downstream in the same transcriptional orientation as V(D)J and Cµ exons. Long repetitive switch (S) regions precede Cµ and downstream CHs. In mature B cells, class switch recombination (CSR) generates different antibody classes by replacing Cµ with a downstream CH (ref. 2). Activation-induced cytidine deaminase (AID) initiates CSR by promoting deamination lesions within Sµ and a downstream acceptor S region; these lesions are converted into DNA double-strand breaks (DSBs) by general DNA repair factors. Productive CSR must occur in a deletional orientation by joining the upstream end of an Sµ DSB to the downstream end of an acceptor S-region DSB. However, the relative frequency of deletional to inversional CSR junctions has not been measured. Thus, whether orientation-specific joining is a programmed mechanistic feature of CSR as it is for V(D)J recombination and, if so, how this is achieved is unknown. To address this question, we adapt high-throughput genome-wide translocation sequencing into a highly sensitive DSB end-joining assay and apply it to endogenous AID-initiated S-region DSBs in mouse B cells. We show that CSR is programmed to occur in a productive deletional orientation and does so via an unprecedented mechanism that involves in cis Igh organizational features in combination with frequent S-region DSBs initiated by AID. We further implicate ATM-dependent DSB-response factors in enforcing this mechanism and provide an explanation of why CSR is so reliant on the 53BP1 DSB-response factor.
Full text:
1
Database:
MEDLINE
Main subject:
B-Lymphocytes
/
Immunoglobulin Constant Regions
/
Immunoglobulin Heavy Chains
/
Immunoglobulin Class Switching
/
Cytidine Deaminase
/
DNA Repair
/
DNA Breaks, Double-Stranded
Limits:
Animals
Language:
En
Journal:
Nature
Year:
2015
Type:
Article
Affiliation country:
United States