Your browser doesn't support javascript.
loading
Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape.
O'Malley, Ronan C; Huang, Shao-Shan Carol; Song, Liang; Lewsey, Mathew G; Bartlett, Anna; Nery, Joseph R; Galli, Mary; Gallavotti, Andrea; Ecker, Joseph R.
Affiliation
  • O'Malley RC; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
  • Huang SC; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
  • Song L; Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
  • Lewsey MG; Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
  • Bartlett A; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
  • Nery JR; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
  • Galli M; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA.
  • Gallavotti A; Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA.
  • Ecker JR; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for
Cell ; 165(5): 1280-1292, 2016 May 19.
Article in En | MEDLINE | ID: mdl-27203113
The cistrome is the complete set of transcription factor (TF) binding sites (cis-elements) in an organism, while an epicistrome incorporates tissue-specific DNA chemical modifications and TF-specific chemical sensitivities into these binding profiles. Robust methods to construct comprehensive cistrome and epicistrome maps are critical for elucidating complex transcriptional networks that underlie growth, behavior, and disease. Here, we describe DNA affinity purification sequencing (DAP-seq), a high-throughput TF binding site discovery method that interrogates genomic DNA with in-vitro-expressed TFs. Using DAP-seq, we defined the Arabidopsis cistrome by resolving motifs and peaks for 529 TFs. Because genomic DNA used in DAP-seq retains 5-methylcytosines, we determined that >75% (248/327) of Arabidopsis TFs surveyed were methylation sensitive, a property that strongly impacts the epicistrome landscape. DAP-seq datasets also yielded insight into the biology and binding site architecture of numerous TFs, demonstrating the value of DAP-seq for cost-effective cistromic and epicistromic annotation in any organism.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Transcription Factors / Sequence Analysis, DNA / Arabidopsis / Genome, Plant / DNA, Plant / Response Elements Language: En Journal: Cell Year: 2016 Type: Article Affiliation country: United States

Full text: 1 Database: MEDLINE Main subject: Transcription Factors / Sequence Analysis, DNA / Arabidopsis / Genome, Plant / DNA, Plant / Response Elements Language: En Journal: Cell Year: 2016 Type: Article Affiliation country: United States