Your browser doesn't support javascript.
loading
Circulating MicroRNAs and Life Expectancy Among Identical Twins.
Wu, Shenghui; Kim, Taek-Kyun; Wu, Xiaogang; Scherler, Kelsey; Baxter, David; Wang, Kai; Krasnow, Ruth E; Reed, Terry; Dai, Jun.
Affiliation
  • Wu S; Department of Epidemiology and Biostatistics, School of Medicine, The University of Texas Health Science Center at San Antonio, Laredo, TX, USA.
  • Kim TK; Institute for Systems Biology, Seattle, WA, USA.
  • Wu X; Institute for Systems Biology, Seattle, WA, USA.
  • Scherler K; Institute for Systems Biology, Seattle, WA, USA.
  • Baxter D; Institute for Systems Biology, Seattle, WA, USA.
  • Wang K; Institute for Systems Biology, Seattle, WA, USA.
  • Krasnow RE; Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, USA.
  • Reed T; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
  • Dai J; Department of Public Health, Des Moines University, Des Moines, IA, USA.
Ann Hum Genet ; 80(5): 247-56, 2016 Sep.
Article in En | MEDLINE | ID: mdl-27402348
ABSTRACT
Human life expectancy is influenced not only by longevity assurance mechanisms and disease susceptibility loci but also by the environment, gene-environment interactions, and chance. MicroRNAs (miRNAs) are a class of small noncoding RNAs closely related to genes. Circulating miRNAs have been shown as promising noninvasive biomarkers in the development of many pathophysiological conditions. However, the concentration of miRNA in the circulation may also be affected by environmental factors. We used a next-generation sequencing platform to assess the association of circulating miRNA with life expectancy, for which deaths are due to all causes independent of genes. In addition, we showed that miRNAs are present in 41-year archived plasma samples, which may be useful for both life expectancy and all-cause mortality risk assessment. Plasma miRNAs from nine identical male twins were profiled using next-generation sequencing. The average absolute difference in the minimum life expectancy was 9.68 years. Intraclass correlation coefficients were above 0.4 for 50% of miRNAs. Comparing deceased twins with their alive co-twin brothers, the concentrations were increased for 34 but decreased for 30 miRNAs. Identical twins discordant in life expectancy were dissimilar in the majority of miRNAs, suggesting that environmental factors are pivotal in miRNAs related to life expectancy.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Twins, Monozygotic / Life Expectancy / MicroRNAs Type of study: Prognostic_studies / Risk_factors_studies Limits: Adult / Aged / Aged80 / Humans / Male / Middle aged Language: En Journal: Ann Hum Genet Year: 2016 Type: Article Affiliation country: United States

Full text: 1 Database: MEDLINE Main subject: Twins, Monozygotic / Life Expectancy / MicroRNAs Type of study: Prognostic_studies / Risk_factors_studies Limits: Adult / Aged / Aged80 / Humans / Male / Middle aged Language: En Journal: Ann Hum Genet Year: 2016 Type: Article Affiliation country: United States