Your browser doesn't support javascript.
loading
Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis.
Xu, Weizhen; DeJesus, Michael A; Rücker, Nadine; Engelhart, Curtis A; Wright, Meredith G; Healy, Claire; Lin, Kan; Wang, Ruojun; Park, Sae Woong; Ioerger, Thomas R; Schnappinger, Dirk; Ehrt, Sabine.
Affiliation
  • Xu W; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • DeJesus MA; Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA.
  • Rücker N; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Engelhart CA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Wright MG; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Healy C; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Lin K; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Wang R; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Park SW; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Ioerger TR; Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA.
  • Schnappinger D; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
  • Ehrt S; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA sae2004@med.cornell.edu.
Article in En | MEDLINE | ID: mdl-28893793
ABSTRACT
Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Bacterial Proteins / Gene Expression Regulation, Bacterial / Cell Wall / Drug Resistance, Multiple, Bacterial / Serine Proteases / Mycobacterium tuberculosis / Antitubercular Agents Limits: Humans Language: En Journal: Antimicrob Agents Chemother Year: 2017 Type: Article Affiliation country: United States

Full text: 1 Database: MEDLINE Main subject: Bacterial Proteins / Gene Expression Regulation, Bacterial / Cell Wall / Drug Resistance, Multiple, Bacterial / Serine Proteases / Mycobacterium tuberculosis / Antitubercular Agents Limits: Humans Language: En Journal: Antimicrob Agents Chemother Year: 2017 Type: Article Affiliation country: United States