Your browser doesn't support javascript.
loading
Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation.
Lebon, Florent; Horn, Ulrike; Domin, Martin; Lotze, Martin.
Affiliation
  • Lebon F; CAPS, U1093 INSERM, Université de Bourgogne Franche-Comté, Faculté des Sciences du Sport, Dijon, F-21078, France.
  • Horn U; Functional Imaging Unit, Department of Diagnostic Radiology and Neuroradiology, University Medicine, University of Greifswald, Greifswald, Germany.
  • Domin M; Functional Imaging Unit, Department of Diagnostic Radiology and Neuroradiology, University Medicine, University of Greifswald, Greifswald, Germany.
  • Lotze M; Functional Imaging Unit, Department of Diagnostic Radiology and Neuroradiology, University Medicine, University of Greifswald, Greifswald, Germany.
Hum Brain Mapp ; 39(4): 1805-1813, 2018 04.
Article in En | MEDLINE | ID: mdl-29322583
Motor imagery (MI) is the mental simulation of action frequently used by professionals in different fields. However, with respect to performance, well-controlled functional imaging studies on MI training are sparse. We investigated changes in fMRI representation going along with performance changes of a finger sequence (error and velocity) after MI training in 48 healthy young volunteers. Before training, we tested the vividness of kinesthetic and visual imagery. During tests, participants were instructed to move or to imagine moving the fingers of the right hand in a specific order. During MI training, participants repeatedly imagined the sequence for 15 min. Imaging analysis was performed using a full-factorial design to assess brain changes due to imagery training. We also used regression analyses to identify those who profited from training (performance outcome and gain) with initial imagery scores (vividness) and fMRI activation magnitude during MI at pre-test (MIpre ). After training, error rate decreased and velocity increased. We combined both parameters into a common performance index. FMRI activation in the left inferior parietal lobe (IPL) was associated with MI and increased over time. In addition, fMRI activation in the right IPL during MIpre was associated with high initial kinesthetic vividness. High kinesthetic imagery vividness predicted a high performance after training. In contrast, occipital activation, associated with visual imagery strategies, showed a negative predictive value for performance. Our data echo the importance of high kinesthetic vividness for MI training outcome and consider IPL as a key area during MI and through MI training.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Parietal Lobe / Imagination / Kinesthesis / Learning / Motor Skills Type of study: Prognostic_studies Limits: Adult / Female / Humans / Male Language: En Journal: Hum Brain Mapp Journal subject: CEREBRO Year: 2018 Type: Article Affiliation country: France

Full text: 1 Database: MEDLINE Main subject: Parietal Lobe / Imagination / Kinesthesis / Learning / Motor Skills Type of study: Prognostic_studies Limits: Adult / Female / Humans / Male Language: En Journal: Hum Brain Mapp Journal subject: CEREBRO Year: 2018 Type: Article Affiliation country: France