Your browser doesn't support javascript.
loading
RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis.
Cui, Xiao-Bing; Luan, Jun-Na; Dong, Kun; Chen, Sisi; Wang, Yongyi; Watford, Wendy T; Chen, Shi-You.
Affiliation
  • Cui XB; From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardi
  • Luan JN; From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardi
  • Dong K; From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardi
  • Chen S; From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardi
  • Wang Y; From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardi
  • Watford WT; From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardi
  • Chen SY; From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardi
Arterioscler Thromb Vasc Biol ; 38(4): e36-e47, 2018 04.
Article in En | MEDLINE | ID: mdl-29449334
ABSTRACT

OBJECTIVE:

The objective of this study is to determine the role and underlying mechanisms of RGC-32 (response gene to complement 32 protein) in atherogenesis. APPROACH AND

RESULTS:

RGC-32 was mainly expressed in endothelial cells of atherosclerotic lesions in both ApoE-/- (apolipoprotein E deficient) mice and human patients. Rgc-32 deficiency (Rgc32-/-) attenuated the high-fat diet-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice without affecting serum cholesterol concentration. Rgc32-/- seemed to decrease the macrophage content without altering collagen and smooth muscle contents or lesional macrophage proliferation in the lesions. Transplantation of WT (wild type) mouse bone marrow to lethally irradiated Rgc32-/- mice did not alter Rgc32-/--caused reduction of lesion formation and macrophage accumulation, suggesting that RGC-32 in resident vascular cells, but not the macrophages, plays a critical role in the atherogenesis. Of importance, Rgc32-/- decreased the expression of ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) in endothelial cells both in vivo and in vitro, resulting in a decrease in TNF-α (tumor necrosis factor-α)-induced monocyte-endothelial cell interaction. Mechanistically, RGC-32 mediated the ICAM-1 and VCAM-1 expression, at least partially, through NF (nuclear factor)-κB signaling pathway. RGC-32 directly interacted with NF-κB and facilitated its nuclear translocation and enhanced TNF-α-induced NF-κB binding to ICAM-1 and VCAM-1 promoters.

CONCLUSIONS:

RGC-32 mediates atherogenesis by facilitating monocyte-endothelial cell interaction via the induction of endothelial ICAM-1 and VCAM-1 expression, at least partially, through NF-κB signaling pathway.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Nuclear Proteins / Endothelial Cells / Atherosclerosis / Inflammation Type of study: Prognostic_studies Language: En Journal: Arterioscler Thromb Vasc Biol Journal subject: ANGIOLOGIA Year: 2018 Type: Article

Full text: 1 Database: MEDLINE Main subject: Nuclear Proteins / Endothelial Cells / Atherosclerosis / Inflammation Type of study: Prognostic_studies Language: En Journal: Arterioscler Thromb Vasc Biol Journal subject: ANGIOLOGIA Year: 2018 Type: Article