Your browser doesn't support javascript.
loading
Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and ß1-integrin.
Fossati, Giuliana; Pozzi, Davide; Canzi, Alice; Mirabella, Filippo; Valentino, Sonia; Morini, Raffaella; Ghirardini, Elsa; Filipello, Fabia; Moretti, Milena; Gotti, Cecilia; Annis, Douglas S; Mosher, Deane F; Garlanda, Cecilia; Bottazzi, Barbara; Taraboletti, Giulia; Mantovani, Alberto; Matteoli, Michela; Menna, Elisabetta.
Affiliation
  • Fossati G; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
  • Pozzi D; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
  • Canzi A; Department of Biomedical Sciences Humanitas University, Milan, Italy.
  • Mirabella F; Department of Biomedical Sciences Humanitas University, Milan, Italy.
  • Valentino S; Department of Biomedical Sciences Humanitas University, Milan, Italy.
  • Morini R; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
  • Ghirardini E; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
  • Filipello F; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
  • Moretti M; Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, University of Milano, Milano, Italy.
  • Gotti C; Department of Biomedical Sciences Humanitas University, Milan, Italy.
  • Annis DS; Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, University of Milano, Milano, Italy.
  • Mosher DF; Institute of Neuroscience - CNR, Milano, Italy.
  • Garlanda C; Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA.
  • Bottazzi B; Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA.
  • Taraboletti G; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
  • Mantovani A; Department of Biomedical Sciences Humanitas University, Milan, Italy.
  • Matteoli M; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
  • Menna E; Department of Biomedical Sciences Humanitas University, Milan, Italy.
EMBO J ; 38(1)2019 01 03.
Article in En | MEDLINE | ID: mdl-30396995
ABSTRACT
Control of synapse number and function in the developing central nervous system is critical to the formation of neural circuits. Astrocytes play a key role in this process by releasing factors that promote the formation of excitatory synapses. Astrocyte-secreted thrombospondins (TSPs) induce the formation of structural synapses, which however remain post-synaptically silent, suggesting that completion of early synaptogenesis may require a two-step mechanism. Here, we show that the humoral innate immune molecule Pentraxin 3 (PTX3) is expressed in the developing rodent brain. PTX3 plays a key role in promoting functionally-active CNS synapses, by increasing the surface levels and synaptic clustering of AMPA glutamate receptors. This process involves tumor necrosis factor-induced protein 6 (TSG6), remodeling of the perineuronal network, and a ß1-integrin/ERK pathway. Furthermore, PTX3 activity is regulated by TSP1, which directly interacts with the N-terminal region of PTX3. These data unveil a fundamental role of PTX3 in promoting the first wave of synaptogenesis, and show that interplay of TSP1 and PTX3 sets the proper balance between synaptic growth and synapse function in the developing brain.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Synapses / C-Reactive Protein / Receptors, AMPA / Integrin beta1 / Extracellular Matrix / Nerve Tissue Proteins Limits: Animals Language: En Journal: EMBO J Year: 2019 Type: Article Affiliation country: Italy

Full text: 1 Database: MEDLINE Main subject: Synapses / C-Reactive Protein / Receptors, AMPA / Integrin beta1 / Extracellular Matrix / Nerve Tissue Proteins Limits: Animals Language: En Journal: EMBO J Year: 2019 Type: Article Affiliation country: Italy