Your browser doesn't support javascript.
loading
Double dissociation of learned approach-avoidance conflict processing and spatial pattern separation along the dorsoventral axis of the dentate gyrus.
Yeates, Dylan C M; Ussling, Alicia; Lee, Andy C H; Ito, Rutsuko.
Affiliation
  • Yeates DCM; Department of Psychology (Scarborough), University of Toronto, Toronto, Canada.
  • Ussling A; Department of Psychology (Scarborough), University of Toronto, Toronto, Canada.
  • Lee ACH; Department of Psychology (Scarborough), University of Toronto, Toronto, Canada.
  • Ito R; Rotman Research Institute, Baycrest Centre, Toronto, Canada.
Hippocampus ; 30(6): 596-609, 2020 06.
Article in En | MEDLINE | ID: mdl-31749280
ABSTRACT
The ventral portion of the rodent hippocampus (HPC; anterior in primates) has been implicated in the detection and resolution of approach-avoidance conflict, which arises when an organism encounters a stimulus that predicts both positive and negative outcomes. Previous work has found differential regulation of approach-avoidance conflict behavior by the CA3 and CA1 subfields, with inhibition of ventral CA3 increasing approach toward conflicting stimuli and inhibition of the ventral CA1 potentiating avoidance. Here, we sought to extend these findings by investigating the role of the dentate gyrus (DG), the input region of the HPC, in learned approach-avoidance conflict processing in rats. Animals were first trained to acquire three different visuotactile cue-outcome associations in separate arms of a Y-maze (appetitive, aversive, and neutral). Postacquisition, they were administered a "conflict test," in which they were presented with a choice between exploring an arm in which the appetitive and aversive cues were concurrently presented (conflict stimulus), and another arm containing the neutral stimulus. GABAR-mediated inactivation of the ventral DG, but not dorsal DG, potentiated approach behavior toward the conflict stimulus, similar to the effects of ventral CA3 inactivation. In contrast, dorsal DG, but not ventral DG, inactivation was found to impair performance on a metric spatial discrimination task, which is commonly used as a test of pattern separation. The findings of this study demonstrate a robust double dissociation between the ventral and dorsal aspects of the DG, in line with previous reports of functional differences along the longitudinal axis of the HPC.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Avoidance Learning / Maze Learning / Conflict, Psychological / Dentate Gyrus / Spatial Learning Type of study: Prognostic_studies Limits: Animals Language: En Journal: Hippocampus Journal subject: CEREBRO Year: 2020 Type: Article Affiliation country: Canada

Full text: 1 Database: MEDLINE Main subject: Avoidance Learning / Maze Learning / Conflict, Psychological / Dentate Gyrus / Spatial Learning Type of study: Prognostic_studies Limits: Animals Language: En Journal: Hippocampus Journal subject: CEREBRO Year: 2020 Type: Article Affiliation country: Canada